• Title/Summary/Keyword: evaluation system of rock mass

Search Result 43, Processing Time 0.022 seconds

An Evaluation of Rock Mass Rating System As Design Aids in Korea (RMR 분류법의 국내 적용성 평가)

  • 구호본;배규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.209-216
    • /
    • 1994
  • Rock mass classifications have played an indispensable role in underground construction for several decades. An important issue in rock mass classifications is the selection of the parameters of greatest significance. There appears to be no single parameter that can fully describe a jointed rock mass for underground construction design. In this paper. We find some problems shen applied rock mass classification for underground construction in domestic, analyze the most significant parameters and parameters correlation influencing the behavior of a rock mass, and suggest the Simplied Rock Mass Rating system based on RMR method for effective underground supports.

  • PDF

A Study on Relationship Between RMR and Q System in Rock Mass Classification (암반분류에서 RMR과 Q System의 상관성 분석)

  • 안종필;박주원;박상도
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.737-744
    • /
    • 2000
  • This paper resorts to rock mass rating and rock mass quality to draw value based on the evaluation of rock and to draw interrelation formula in relation to rock mass quality, A comparative analysis was given of survey values reported in the existing documents. This paper has tried to find out the relationship between RMR and Q System for the sake of choosing rational reinforcing patterns and of the safety of tunnels. The results run as follow: RMR=8.251n(Q)+43.83. This paper has also tried to find out the relationship between RMR and Q System by using Fuzzy Approximate Reasoning Concept. We suggest that those in charge should not depend on a single system only after evaluating the classification of rocks, and compare one result with another for the good of keeping track of the condition of base rocks in a better way.

  • PDF

Selection of Optimum Support based on Rock Mass Classification and Monitoring Results at NATM Tunnel in Hard Rock (경암지반 NATM 터널에서 암반분류 및 계측에 의한 최적지보공 선정에 관한 연구)

  • 김영근;장정범;정한중
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.197-208
    • /
    • 1996
  • Due to the constraints in pre site-investigation for tunnel, it is essential to redesign the support structures suitable for rock mass conditions such as rock strength, ground water and discontinuity conditions for safe tunnel construction. For the selection of optimum support, it is very important to carry out the rock mass classification and in-situ measurement in tunnelling. In this paper, in a mountain tunnel designed by NATM in hard rock, the selectable system for optimum support has been studied. The tunnel is situated at Chun-an in Kyungbu highspeed railway line with 2 lanes over a length of 4, 020 m and a diameter of 15 m. The tunnel was constructed by drill & blasting method and long bench cut method, designed five types of standard support patterns according to rock mass conditions. In this tunnel, face mapping based on image processing of tunnel face and rock mass classification by RMR carried out for the quantitative evaluation of the characteristics of rock mass and compared with rock mass classes in design. Also, in-situ measurement of convergence and crown settlement conducted about 30 m interval, assessed the stability of tunnel from the analysis of monitoring data. Through the results of rock mass classification and in-situ measurement in several sections, the design of supports were modified for the safe and economic tunnelling.

  • PDF

REVALUATION OF (지공학적 암반분류의 재평가)

  • 김교원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.03a
    • /
    • pp.33-40
    • /
    • 1993
  • The Bieniawski's geomechanics classification system(1984) is widely employed as a tool of engineering evaluation of rock masses for tunnel design. Since the siz parameters adoped in the system are believed to control the engineering behavior of rock mass under an external load, no question may be raised to the conceptional idea immanent in the system. However, the rating grade for each individual parameter given in the system may be properly measured since an engineering property of rock mass is not stepwise changed but continuously changed. In order to get the proper rating grade based upon the continuously changed properties in each parameter, several equations presented in this paper are obtained through regration analyses with the grades and median values of properties givne in the system. A FORTRAN computer program given in the paper could provide not only RMR value but also rock mass properties (E, c, o, v, etc.) using the empirical equations.

  • PDF

A Study on the Stability Assessment and Application of Rock Slope (암반사면의 안정성 평가 및 적용에 관한 연구)

  • 안종필;박주원;오수동
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.177-184
    • /
    • 1999
  • In general tile evaluation process of rock slope stability is an ambiguous system which is made up of ideas subjected to practical experience of an expert. This paper aims to propose more effective methods that helps engineers to evaluate the stability of rock slope by using RMR(Rock Mass Rating for the Geomechanics Classification) and Stereo-graphic Projection and Fuzzy Approximate Reasoning Concept. the result of this paper is that a rational evaluation of rock slope stability and countermeasures can be achieved thorough RMR. and Stereo-graphic Projection and Fuzzy Approximate Reasoning Concept.

  • PDF

Smart monitoring analysis system for tunnels in heterogeneous rock mass

  • Kim, Chang-Yong;Hong, Sung-Wan;Bae, Gyu-Jin;Kim, Kwang-Yeom;Schubert, Wulf
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.255-261
    • /
    • 2003
  • Tunnelling in poor and heterogeneous ground is a difficult task. Even with a good geological investigation, uncertainties with respect to the local rock mass structure will remain. Especially for such conditions, a reliable short-term prediction of the conditions ahead and outside the tunnel profile are of paramount importance for the choice of appropriate excavation and support methods. The information contained in the absolute displacement monitoring data allows a comprehensive evaluation of the displacements and the determination of the behaviour and influence of an anisotropic rock mass. Case histories and with numerical simulations show, that changes in the displacement vector orientation can indicate changing rock mass conditions ahead of the tunnel face (Schubert & Budil 1995, Steindorfer & Schubert 1997). Further research has been conducted to quantify the influence of weak zones on stresses and displacements (Grossauer 2001). Sellner (2000) developed software, which allows predicting displacements (GeoFit$\circledR$). The function parameters describe the time and advance dependent deformation of a tunnel. Routinely applying this method at each measuring section allows determining trends of those parameters. It shows, that the trends of parameter sets indicate changes in the stiffness of the rock mass outside the tunnel in a similar way, as the displacement vector orientation does. Three-dimensional Finite Element simulations of different weakness zone properties, thicknesses, and orientations relative to the tunnel axis were carried out and the function parameters evaluated from the results. The results are compared to monitoring results from alpine tunnels in heterogeneous rock. The good qualitative correlation between trends observed on site and numerical results gives hope that by a routine determination of the function parameters during excavation the prediction of rock mass conditions ahead of the tunnel face can be improved. Implementing the rules developed from experience and simulations into the monitoring data evaluation program allows to automatically issuing information on the expected rock mass quality ahead of the tunnel.

  • PDF

A Study on the Evaluation of Necessity for the Support in Case of Excavartion of the Transport Drift at Danyang Site (단양지역의 운방갱도 굴착시 갱도 지보의 필요성 판정에 관한 연구)

  • 이종욱;조만섭;김일중;김영석
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.54-62
    • /
    • 1993
  • In order to evaluate the necessity for the support during the excavation of the transport drift and use the data for design applications, laboratory testings of mechanical properties of rock samples and engineering rock mass classifications on this study site were performed. The values of RMR and Q-system are 68 and 11.8, respectively. Since these results were evaluated as good, this rock mass were determined to be unsupported. Full face excavation method was determined to be suitable for excavating this drift. In case of excavation, smooth blasting techniques must be carried out at the wall rock and the crown. However, considering the blast vibration etc. that have an effect on the surrounding rock mass, approximately less than 9kg of explosive charges per blast should be maintained.

  • PDF

A study on the rock fracture mechanism of cutter penetration and the assessment system of TBM tunnelling procedure

  • Baek, Seung-Han;Moon, Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.162-169
    • /
    • 2003
  • Excavation by TBM can be characterized by a rock-machine interaction during the cutting process on a small scale, but on a large scale the interaction between the rock mass and TBM becomes very significant. For the planning and evaluation of TBM tunnelling it needs to understand rock fracture mechanism by a cutter or cutters on a small scale, and to estimate penetration rate, advance rate and utilization on a large scale. In this study rock chipping mechanism due to cutter-penetration is analysed by numerical simulation, showing that rock chipping is mainly occurred by tensile failure. Also, through the analysis of factors that affect on TBM procedures in various assessment systems, it is determined that the key elements that should be considered in the planning and evaluation of TBM tunnelling are classified into rock properties, the geological structures and properties of rock mass, and the structural and functional specifications of the machine. The user-friendly assessment tool is developed, so that penetration rate, advance rate and TBM utilization are evaluated from various input data. The tool developed in this study can be applied to a practical TBM tunnelling by understanding TBM tunnelling procedures.

  • PDF

Suggestion of a Modified RMR based on Effect of RMR Parameters on Tunnel Displacement in Sedimentary Rocks (퇴적암 기반 터널에서의 지질인자별 변위 영향도를 고려한 RMR 수정 제안)

  • Seo, Yong-Seok;Yim, Sung-Bin;Na, Jong-Hwa;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.197-205
    • /
    • 2008
  • Total displacement under non-reinforcement is a quantitative index of rock mass behavior during tunnel excavation and depends widely upon geological characteristics. The primary purpose of this study is to suggest a rock mass evaluation method, well representing tunnel behavior during excavation, according to rock type. A 3-D numerical analysis was carried out, with consideration of the shape of tunnel section, excavation condition and so forth, in a sedimentary rock-based tunnel, and total displacements under non-reinforcement according to rock mass class were calculated. Finally, quantification analysis was carried out to assess correlation of the total displacement with RMR parameters. As the result, a modified RMR system fer quantification of rock mass behavior during tunnel excavation is suggested.

Non-deformable support system application at tunnel-34 of Ankara-Istanbul high speed railway project

  • Aksoy, C.O.;Uyar, G.G.;Posluk, E.;Ogul, K.;Topal, I.;Kucuk, K.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.869-886
    • /
    • 2016
  • Non-Deformable Support System (NDSS) is one of the support system analysis methods. It is likely seen as numerical analysis. Obviously, numerical modeling is the key tool for this system but not unique. Although the name of the system makes you feel that there is no deformation on the support system, it is not true. The system contains some deformation but in certain tolerance determined by the numerical analyses. The important question is what is the deformation tolerance? Zero deformation in the excavation environment is not the case, actually. However, deformation occurred after supporting is important. This deformation amount will determine the performance of the applied support. NDSS is a stronghold analysis method applied in full to make this work. While doing this, NDSS uses the properties of rock mass and material, various rock mass failure criteria, various material models, different excavation geometries, like other methods. The thing that differ NDSS method from the others is that NDSS makes analysis using the time dependent deformation properties of rock mass and engineering judgement. During the evaluation process, NDSS gives the permission of questioning the field observations, measurements and timedependent support performance. These transactions are carried out with 3-dimensional numeric modeling analysis. The goal of NDSS is to design a support system which does not allow greater deformation of the support system than that calculated by numerical modeling. In this paper, NDSS applied to the problems of Tunnel 34 of the same Project (excavated with NATM method, has a length of 2218 meters), which is driven in graphite schist, was illustrated. Results of the system analysis and insitu measurements successfully coincide with each other.