• 제목/요약/키워드: evaluation data

검색결과 16,702건 처리시간 0.049초

Data Sparsity and Performance in Collaborative Filtering-based Recommendation

  • Kim Jong-Woo;Lee Hong-Joo
    • Management Science and Financial Engineering
    • /
    • 제11권3호
    • /
    • pp.19-45
    • /
    • 2005
  • Collaborative filtering is one of the most common methods that e-commerce sites and Internet information services use to personalize recommendations. Collaborative filtering has the advantage of being able to use even sparse evaluation data to predict preference scores for new products. To date, however, no in-depth investigation has been conducted on how the data sparsity effect in customers' evaluation data affects collaborative filtering-based recommendation performance. In this study, we analyzed the sparsity effect and used a hybrid method based on customers' evaluations and purchases collected from an online bookstore. Results indicated that recommendation performance decreased monotonically as sparsity increased, and that performance was more sensitive to sparsity in evaluation data rather than in purchase data. Results also indicated that the hybrid use of two different types of data (customers' evaluations and purchases) helped to improve the recommendation performance when evaluation data were highly sparse.

다차원 데이터 평가가 가능한 개선된 FSDD 연구 (An Improvement of FSDD for Evaluating Multi-Dimensional Data)

  • 오세종
    • 디지털융복합연구
    • /
    • 제15권1호
    • /
    • pp.247-253
    • /
    • 2017
  • 피처선택, 혹은 변수 선택은 피처의 수가 매우 많은 고차원 데이터에서 주어진 주제와 연관성이 높은 피처를 선별하는 과정으로서, 데이터의 차원수를 낮추어 군집분석이나 분류 분석 등을 용이하게 하는데 중요한 기법이다. 많은 수의 피처들 중에서 일부의 피처를 선별하기 위해서는 피처들을 평가하기 위한 도구가 필요하다. 현재까지 제안된 도구들은 대부분 확률이론이나 정보이론에 기초하여 만들어졌기 때문에 하나의 피처, 즉 1차원 데이터만을 평가할 수 있다. 그러나 피처들 간에는 상호작용이 있기 때문에 하나의 피처를 평가하기 보다는 여러 피처들의 집합, 즉 다차원 데이터를 평가할 수 있어야 효과적인 피처 선택이 가능하다. 본 연구에서는 확장된 거리 함수를 이용하여 1차원 데이터 평가용으로 제안된 FSDD 평가 함수를 다차원 데이터에 대한 평가가 가능하도록 개선하는 방법에 대해 제안하였다. 본 연구에서 제안한 접근법은 다른 1차원 데이터 평가함수에도 적용이 될 수 있을 것으로 기대된다.

연구데이터 관점에서 본 거대언어모델 품질 평가 기준 제언 (A Proposal of Evaluation of Large Language Models Built Based on Research Data)

  • 한나은;서수정;엄정호
    • 정보관리학회지
    • /
    • 제40권3호
    • /
    • pp.77-98
    • /
    • 2023
  • 본 연구는 지금까지 제안된 거대언어모델 가운데 LLaMA 및 LLaMA 기반 모델과 같이 연구데이터를 주요 사전학습데이터로 활용한 모델의 데이터 품질에 중점을 두어 현재의 평가 기준을 분석하고 연구데이터의 관점에서 품질 평가 기준을 제안하였다. 이를 위해 데이터 품질 평가 요인 중 유효성, 기능성, 신뢰성을 중심으로 품질 평가를 논의하였으며, 거대언어모델의 특성 및 한계점을 이해하기 위해 LLaMA, Alpaca, Vicuna, ChatGPT 모델을 비교하였다. 현재 광범위하게 활용되는 거대언어모델의 평가 기준을 분석하기 위해 Holistic Evaluation for Language Models를 중심으로 평가 기준을 살펴본 후 한계점을 논의하였다. 이를 바탕으로 본 연구는 연구데이터를 주요 사전학습데이터로 활용한 거대언어모델을 대상으로 한 품질 평가 기준을 제시하고 추후 개발 방향을 논의하였으며, 이는 거대언어모델의 발전 방향을 위한 지식 기반을 제공하는데 의의를 갖는다.

실내공간의 유형별 이미지 평가를 통한 정보획득특성에 관한 연구 - 성별 비교를 중심으로 - (A Study of Data Acquiring Characteristics Through Image Evaluation by Types of Interior Space - Focused on Gender Comparisons -)

  • 최계영;최주영;김종하
    • 한국실내디자인학회논문집
    • /
    • 제20권5호
    • /
    • pp.143-151
    • /
    • 2011
  • Since it is important to understand data acquiring characteristics through relationship between spatial types and spatial elements and apply it to spatial plans for smooth communication between designer and user of space, the conclusions gained from analysis of data acquiring characteristics of spatial elements through image evaluation by types of interior space can be summarized as in the followings: First, for the amount of acquired data by types of interior space, it shows that the acquired amount of data is to change by types and data acquiring method (phrase and image) even though the spatial elements are same. Second, for the data acquiring process of spatial types by gender, it shows that there is a big difference in acquiring of data according to the evaluation method by phrase and image. Third, for the amount of acquired data of spatial types by gender, it shows that there is a difference between male and female, which is by "classic ${\rightarrow}$ modern ${\rightarrow}$ natural" in case of male and "classic ${\rightarrow}$ natural ${\rightarrow}$ modern" in case of female. regarding both of phrase and image. Fourth, for the evaluation by gender, it shows that there is a deviation in the value of difference according to the elements by which data acquiring characteristics evaluate space. It is considered that this deviation characteristic is in need of reflection in the process of spatial evaluation. This study analyzed data acquiring characteristics of space user's spatial elements through image evaluation by types of space to understand how data acquiring would be changed of spatial elements according to type and gender. Through this study, it expects to make clear that, when a designer is planning a certain space, if the space can be a space for the user by understanding of which elements should be exposed to users by types to acquire more data.

가속도 및 변형률 계측데이터를 이용한 철골 단순보 손상평가 (Damage Evaluation of a Simply Supported Steel Beam Using Measured Acceleration and Strain Data)

  • 박수용;박효선;이홍민;최상현
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.167-174
    • /
    • 2006
  • In this paper, the applicability of strain data to a strain-energy-based damage evaluation methodology in detecting damage in a beam-like structure is demonstrated. For the purpose of this study, one of the premier damage evaluation methodology based on modal amplitudes, the damage index method, is expanded to accomodate strain data, and the numerical and experimental verifications are conducted using numerical and experimental data. To compare the relative performance of damage detection, the damage evaluation using acceleration data is also performed for the same damage scenarios. The experimental strain and acceleration data are extracted from laboratory static and dynamic tests. The numerical and experimental studies show that the strain data as well as acceleration data can be utilized in detecting damage.

  • PDF

빅데이터 분석 기반의 오피니언 마이닝을 이용한 정보화 사업 평가 분석 (An Analysis of IT Proposal Evaluation Results using Big Data-based Opinion Mining)

  • 김홍삼;김종수
    • 산업경영시스템학회지
    • /
    • 제41권1호
    • /
    • pp.1-10
    • /
    • 2018
  • Current evaluation practices for IT projects suffer from several problems, which include the difficulty of self-explanation for the evaluation results and the improperly scaled scoring system. This study aims to develop a methodology of opinion mining to extract key factors for the causal relationship analysis and to assess the feasibility of quantifying evaluation scores from text comments using opinion mining based on big data analysis. The research has been performed on the domain of publicly procured IT proposal evaluations, which are managed by the National Procurement Service. Around 10,000 sets of comments and evaluation scores have been gathered, most of which are in the form of digital data but some in paper documents. Thus, more refined form of text has been prepared using various tools. From them, keywords for factors and polarity indicators have been extracted, and experts on this domain have selected some of them as the key factors and indicators. Also, those keywords have been grouped into into dimensions. Causal relationship between keyword or dimension factors and evaluation scores were analyzed based on the two research models-a keyword-based model and a dimension-based model, using the correlation analysis and the regression analysis. The results show that keyword factors such as planning, strategy, technology and PM mostly affects the evaluation result and that the keywords are more appropriate forms of factors for causal relationship analysis than the dimensions. Also, it can be asserted from the analysis that evaluation scores can be composed or calculated from the unstructured text comments using opinion mining, when a comprehensive dictionary of polarity for Korean language can be provided. This study may contribute to the area of big data-based evaluation methodology and opinion mining for IT proposal evaluation, leading to a more reliable and effective IT proposal evaluation method.

외재적 단서가 의류제품 평가에 미치는 영향(제2보) -소비자 특성을 중심으로- (An Effect of Extrinsic Cue on Apparel Products Evaluation(Part II) - focusing the consumer′s characteristics -)

  • 이미현;임숙자
    • 한국의류학회지
    • /
    • 제25권6호
    • /
    • pp.1091-1099
    • /
    • 2001
  • Evaluation on jean products were varied although they were the identical jeans. Therefore, we could confirm the bias by price. brand, and store when consumer evaluating jean products. The various consumer characteristics also provided effects evaluation on jean products. An evaluation on jean products is very subjective and the degrees depending on these three cues could be varied by consumer's characteristics. For empirical study, experiments by the subjects among students of ewha womans university were done by using jeans as stimulus. Data was collected by a questionnaire made up by a researcher based on the theoretical and pretest. Data was analyzed by ANOVA, factor analysis, grouping analysis, F-test, and etc. 571 data were analysed out of the 600 data. Cues such as price, brand, and store affected significantly the evaluation of jeans. The most important cue of all three was store, then price, and then brand. These three cues affected the evaluation of jean products separately and together. The result of the study was that the consumers characteristics mediated the effects of extrinsic cues like price, brand, and store on jean products evaluation. Consumer's characteristics like prior knowledge and shopping orientation mediated the effects of price, and store cue on jean products evaluation.

  • PDF

Parameter estimation and assessment of bias in genetic evaluation of carcass traits in Hanwoo cattle using real and simulated data

  • Mohammed Bedhane;Julius van der Werf;Sara de las Heras-Saldana;Leland Ackerson IV;Dajeong Lim;Byoungho Park;Mi Na Park;Seunghee Roh;Samuel Clark
    • Journal of Animal Science and Technology
    • /
    • 제65권6호
    • /
    • pp.1180-1193
    • /
    • 2023
  • Most carcass and meat quality traits are moderate to highly heritable, indicating that they can be improved through selection. Genetic evaluation for these types of traits is performed using performance data obtained from commercial and progeny testing evaluation. The performance data from commercial farms are available in large volume, however, some drawbacks have been observed. The drawback of the commercial data is mainly due to sorting of animals based on live weight prior to slaughter, and this could lead to bias in the genetic evaluation of later measured traits such as carcass traits. The current study has two components to address the drawback of the commercial data. The first component of the study aimed to estimate genetic parameters for carcass and meat quality traits in Korean Hanwoo cattle using a large sample size of industry-based carcass performance records (n = 469,002). The second component of the study aimed to describe the impact of sorting animals into different contemporary groups based on an early measured trait and then examine the effect on the genetic evaluation of subsequently measured traits. To demonstrate our objectives, we used real performance data to estimate genetic parameters and simulated data was used to assess the bias in genetic evaluation. The results of our first study showed that commercial data obtained from slaughterhouses is a potential source of carcass performance data and useful for genetic evaluation of carcass traits to improve beef cattle performance. However, we observed some harvesting effect which leads to bias in genetic evaluation of carcass traits. This is mainly due to the selection of animal based on their body weight before arrival to slaughterhouse. Overall, the non-random allocation of animals into a contemporary group leads to a biased estimated breeding value in genetic evaluation, the severity of which increases when the evaluation traits are highly correlated.