• Title/Summary/Keyword: evaluating environmental and engineering efficiency

Search Result 77, Processing Time 0.03 seconds

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

A Study for selecting the Highway Sites' Best Management Practice for Nonpoint Source Pollution (고속도로 현장별 비점오염 저감시설 선정방안 연구)

  • Lee, Yong-Bok;Choi, Sang-Il;Park, Kye-Su;Seong, Il-Jong;Jung, Sun-Kook
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.857-866
    • /
    • 2011
  • This research categorized EIA target highways into following three types in order to minimize non-point source pollution from highway runoff. 1. Big drainage basin. 2. Small drainage basin. 3. Bridge section. The Natural, Filter and Swirl-Type devices were evaluated in terms of removal efficiency of TSS, BOD, COD, T-N, T-P, compatibility of site selection, economic feasibility, and maintenance convenience through which the final BMP was selected. According to the removal efficiency result, the area of Big and Small Drainage basin and bridge section had higher removal efficiency with natural facility than that of the Filter or Swirl-Type device. To make appropriate selection of highways'BMP for non-point source pollution, this study will aim to contribute to building more environmentally friendly highways by proposing the selection process that is made of 5 stages. 1. Selecting the target drainage basin. 2. Selecting the land for the mitigation facility. 3. Analysing the ease of maintenance. 4. Technically evaluating each installation. 5. Evaluating the effective implementation methods.

Cleaning agents efficiency in cleaning of polymeric and ceramic membranes fouled by natural organic matter

  • Urbanowska, Agnieszka;Kabsch-Korbutowicz, Malgorzata
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Ultrafiltration is known to be one of the most commonly applied techniques in water treatment. Membrane fouling is the main limiting factor in terms of process efficiency and restricting it to the manageable degree is crucial. Natural organic matter is often found to be a major foulant in surface waters. Among many known fouling prevention techniques, the membrane chemical cleaning is widely employed. This study focuses on evaluating the cleaning efficiency of polymeric and ceramic membranes with the use of various chemicals. The influence of cleaning agent type and its concentration, membrane material and its MWCO, and cleaning process duration on the recovery of membrane flux was analyzed. Results have shown that, regardless of membrane type and MWCO, the most effective cleaning agent was NaOH.

다목적 콘 관입시험기의 활용

  • Bae, Myeong-Ho;Yoon, Hyung-Koo;Kim, Ju-Han;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.163-170
    • /
    • 2010
  • Today, In-Situ testing for measureing geotechnical characterization are divided by Cone Penetration Test, Standard Penetration Test and Dilatometer Test, and will vary depending on soil conditions have been applied (Korea Geotechnical Engineering, 2006). However, these methods can be applied on sand or soft clay soil. Now, many studies are progressing for evaluating the stiffness characteristic of rocks and IGM. and Nam moon suk(2006) did Texas Cone Penetrometer Test for designing field penetration pile intruded at rocks and IGM. but, reliability of Texas Cone Penetration Test has confidence limits because TCPT is testing in Texas centrally, and energy dose not measure Woojin Lee, etc. (1998) did calculate Standard Penetration Test Hammer's dynamic energy efficiency by using dongjaeha analyzer. this research, we installed strain gage and accelerometer for supply existing equipment, and develop MCP that can use variety soils. this thesis, we measured energy at head and tip of Rod for evaluating energy that transport at free falling. As a result, Energy differences are occurred at head and tip of Rod.

  • PDF

Life Cycle Assessment and Eco-efficiency Analysis for the Resource-circulation Network of Waste Heat Generated from Industrial Process (공정폐열의 자원순환 네트워크 구성을 위한 전과정 평가 및 생태효율성 분석)

  • Shin, Choon-Hwan;Park, Do-Hyun;Kim, Ji-Won
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.281-289
    • /
    • 2013
  • For the purpose of evaluating the eco-efficiency(EE) on surplus heat generated from industrial process, techniques of life cycle assessment are adopted in this study. Because it can be indicated both environmental impacts and economic benefits, EE is well known as a useful tool for symbiosis network on the sustainable development of new projects and businesses. To evaluate environmental impacts, the categories were divided into two areas of resource depletion and global warming potential. It can be seen that environmental impact increased a little but much higher economic benefit on the company, environmental performance and economic value were improved on the apartment by the district heating, respectively. In result, eco-industrial park(EIP) project on surplus heat should be found sustainable new business because the EE was in the area of fully positively eco-efficiency and, moreover resource depletion was taken place than the reduction of greenhouse gas.

The efficiency and robustness of a uni-directional tuned liquid damper and modelling with an equivalent TMD

  • Tait, M.J.;Isyumov, N.;El Damatty, A.A.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.235-250
    • /
    • 2004
  • The current study reports the results of an experimental program conducted on a structure fitted with a liquid damper (TLD) and subjected to harmonic excitation. Screens were placed inside the TLD to achieve the required inherent damping. In the first part of the study, reduced scale models of the building-TLD systems were tested under two levels of excitation. The efficiency of the damper was assessed by evaluating the effective damping provided to the structure and comparing it to the optimum effective damping value, provided by a linear tuned mass damper (TMD). An extensive parametric study was then conducted for one of the three models by varying both the excitation amplitude and the tuning ratio, defined as the ratio of the TLD sloshing frequency to the natural frequency of the structure. The effectiveness and robustness of a TLD with screens were assessed. Results indicate that the TLD can be tuned to achieve a robust performance and that its efficiency is not significantly affected by the level of excitation. Finally, the equivalent amplitude dependent TMD model, developed in the companion paper is validated using the system test results.

Proposed Operating Parameters for Advanced Treatment Process using a Cilium Media BNR Process (섬모상담체를 이용한 고도처리공정의 운전인자 도출)

  • Ahn, Yoon Hee;Park, Chan Gyu;Ko, Kwang Baik;Lee, Kang Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.761-765
    • /
    • 2007
  • The study were conducted in order to investigate the effect of operating parameters including the internal recycle (nitrification return) rates, hydraulic retention times (HRTs) and temperature when using a cilium media method. The first experiment was for evaluating the effect of HRT (12 hr, 10 hr, 8 hr, 6 hr, 4 hr). The second experiment was for analyzing effect of internal recycle rate (100%, 200%, 300%, 400%). As a result of the first experiment, BOD was removed to 97~98% for 6~8 hr HRT. Effluent water quality was not significantly influenced with HRT within that range. However the nitrogen removal was sensitive to HRT. T-P removal efficiency was invariable at various HRTs. The average BOD removal efficiency was about 97% in spite of change of internal recycle rate while T-N removal efficiency was increased at the internal recycle rate of 100~200%, but invariable at the internal recycle rate of 200~300%.

Image Processing and Deep Learning-based Defect Detection Theory for Sapphire Epi-Wafer in Green LED Manufacturing

  • Suk Ju Ko;Ji Woo Kim;Ji Su Woo;Sang Jeen Hong;Garam Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.81-86
    • /
    • 2023
  • Recently, there has been an increased demand for light-emitting diode (LED) due to the growing emphasis on environmental protection. However, the use of GaN-based sapphire in LED manufacturing leads to the generation of defects, such as dislocations caused by lattice mismatch, which ultimately reduces the luminous efficiency of LEDs. Moreover, most inspections for LED semiconductors focus on evaluating the luminous efficiency after packaging. To address these challenges, this paper aims to detect defects at the wafer stage, which could potentially improve the manufacturing process and reduce costs. To achieve this, image processing and deep learning-based defect detection techniques for Sapphire Epi-Wafer used in Green LED manufacturing were developed and compared. Through performance evaluation of each algorithm, it was found that the deep learning approach outperformed the image processing approach in terms of detection accuracy and efficiency.

  • PDF

Development of a GIS Model for Projecting Eco-Friendly Forest Roads (GIS를 이용(利用)한 환경친화적(環境親和的) 임도(林道) 노선(路線) 선정(選定) 프로그램의 개발(開發))

  • Lee, Byungdoo;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.431-439
    • /
    • 2000
  • In this study, a GIS-application model to determine the optimal route of eco-friendly forest roads and to evaluate the environmental and engineering features of the route was developed. The model consists of five modules for managing spatial and attribute data, determining the optimal route for forest road projection, evaluating environmental and engineering efficiency of forest roads, analyzing characteristics of mountain terrains and report-writing. Using the pull-down menu system, these modules were integrated to be user-friendly for forest field practitioners. Visual Basic 6.0 and Avenue were used as the programming tool and the commercial GIS softwares, ArcView 3.1, Spatial Analyst and 3-D Analyst were used as the basic engine of the model for GIS analysis. In this paper, discussed are the principles for forest road projection and evaluation and structures and application features of the model.

  • PDF

Improvement of Rapid Sand Filtration to Two Stage Dual Media Filtration System in Water Treatment Plant (정수처리장 사여과지의 이단이중여과재 시스템으로의 개량)

  • Woo, Dal-Sik;Kim, Jooneon;Hwang, Byung-Gi;Chae, Su-Kweon;Jo, Kwanhyung
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.737-742
    • /
    • 2014
  • This study aimed for evaluating the applicability of the two stage dual media filtration system in field water treatment plant. The field plant of two stage and dual media filtration system was operated for 2 months. Average iron concentrations of the settled water, existing filtered water and second stage filtered water was 0.041 mg/L, 0.007 mg/L and 0.005 mg/L, respectively. Removal efficiency of iron concentration in the second stage is appropriately 35% more than in existing filtered water. Also removal efficiency of residual chlorine in the dual media filtration system is relatively 42.3% more than in existing filtered water due to adsorption of activated carbon, but the removal of ammonia nitrogen by adsorption is insufficient. Average concentrations of THM and chloroform in the settled water are 0.033 mg/L, 0.026 mg/L, respectively and in existing filtered water are 0.023 mg/L and 0.023 mg/L. Average concentrations of THM and chloroform in the dual media filtration system are 0.008 mg/L and 0.013 mg/L. Therefore removal efficiency of THM concentration in second stage is more than 66.4% in existing filtrated water. Also removal efficiency of chloroform in the dual media filtration system is more than 50.0% in existing filtered water because of the adsorption of activated carbon. In this case backwashing period in dual stage system is 4~5 days, but in existing filtration system is 1~2 days.