• Title/Summary/Keyword: eutectic melting

Search Result 86, Processing Time 0.023 seconds

Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic

  • Ye, Chang-Mei;Jiang, Shi-Lin;Liu, Ya-Lan;Xu, Kai;Yang, Shao-Hua;Chang, Ke-Ke;Ren, Hao;Chai, Zhi-Fang;Shi, Wei-Qun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3-GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.

Effects of Cr and Fe Addition on Microstructure and Tensile Properties of Ti-6Al-4V Prepared by Direct Energy Deposition

  • Byun, Yool;Lee, Sangwon;Seo, Seong-Moon;Yeom, Jong-taek;Kim, Seung Eon;Kang, Namhyun;Hong, Jaekeun
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1213-1220
    • /
    • 2018
  • The effects of Cr and Fe addition on the mechanical properties of Ti-6Al-4V alloys prepared by direct energy deposition were investigated. As the Cr and Fe concentrations were increased from 0 to 2 mass%, the tensile strength increased because of the fine-grained equiaxed prior ${\beta}$ phase and martensite. An excellent combination of strength and ductility was obtained in these alloys. When the Cr and Fe concentrations were increased to 4 mass%, extremely fine-grained martensitic structures with poor ductility were obtained. In addition, Fe-added Ti-6Al-4V resulted in a partially melted Ti-6Al-4V powder because of the large difference between the melting temperatures of the Fe eutectic phase (Ti-33Fe) and the Ti-6Al-4V powder, which induced the formation of a thick liquid layer surrounding Ti-6Al-4V. The ductility of Fe-added Ti-6Al-4V was thus poorer than that of Cr-added Ti-6Al-4V.

Low-Temperature Sintering Behavior of Aluminum Nitride Ceramics with Added Copper Oxide or Copper

  • Hwang, Jin-Geun;Oh, Kyung-Sik;Chung, Tai-Joo;Kim, Tae-Heui;Paek, Yeong-Kyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.104-110
    • /
    • 2019
  • The low-temperature sintering behavior of AlN was investigated through a conventional method. $CaF_2$, CuO and Cu were selected as additives based on their low melting points. When sintered at $1600^{\circ}C$ for 8 h in $N_2$ atmosphere, a sample density > 98% was obtained. The X-ray data indicated that eutectic reactions below $1200^{\circ}C$ were found. Therefore, the current systems have lower liquid formation temperatures than other systems. The liquid phase showed high dihedral angles at triple grain junctions, indicating that the liquid had poor wettability on the grain surfaces. Eventually, the liquid was likely to vaporize due to the unfavorable wetting condition. As a result, a microstructure with clean grain boundaries was obtained, resulting in higher contiguity between grains. From EDS analysis, oxygen impurity seems to be well removed in AlN lattice. Therefore, it is believed that the current systems are beneficial for reducing sintering temperature and improving oxygen removal.

Study on the Suitability of Heat Source for Thermoelectric Cells Using Porous Iron Powder (다공성 철 분말을 이용한 열전지용 열원 적합성 연구)

  • Kim, Ji Youn;Yoon, Hyun Ki;Im, Chae Nam;Cho, Jang-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.377-385
    • /
    • 2022
  • Thermal batteries are specialized as primary reserve batteries that operate when the internal heat source is ignited and the produced heat (450~550℃) melts the initially insulating salt into highly conductive eutectic electrolyte. The heat source is composed of Fe powder and KClO4 with different mass ratios and is inserted in-between the cells (stacks) to allow homogeneous heat transfer and ensure complete melting of the electrolyte. An ideal heat source has following criteria to satisfy: sufficient mechanical durability for stacking, appropriate heat calories, ease of combustion by an igniter, stable combustion rate, and modest peak temperature. To satisfy the aforementioned requirements, Fe powder must have high surface area and porosity to increase the reaction rate. Herein, the hydrothermal and spray drying synthesis techniques for Fe powder samples are employed to investigate the physicochemical properties of Fe powder samples and their applicability as a heat source constituent. The direct comparison with the state-of-the-art Fe powder is made to confirm the validity of synthesized products. Finally, the actual batteries were made with the synthesized iron powder samples to examine their performances during the battery operation.

Fluid Inclusions Trapped in Tourmaline from the Daeyou Pegmatite Deposit, Jangsu-Gun, Jeollabukdo (전북 장수군 대유 페그마타이트광산의 전기석에 포획된 유체포유물)

  • Lee, Ju-Youn;Eom, Young-Bo;Nam, Bok-Hyun;Hwang, Byoung-Hoon;Yang, Kyoung-Hee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.7-19
    • /
    • 2007
  • Four types of fluid inclusions are trapped within tourmaline from Daeyou pegmatite, Jangsu-Gun, Jeonllabukdo. They range $5{\sim}100\;{\mu}m$ in size and are grouped into I, II, III, and IV based on the phase behavior at the room temperature: (1) Type I inclusions are liquid-rich and NaCl equivalent salinity ranged $0{\sim}12\;wt%$, and the homogenization temperatures (Th) ranged $181{\sim}230^{\circ}C$ with eutectic temperatures (Te) $-54{\sim}-22^{\circ}C$. (2) Type II inclusions are vapor-rich and salinity ranged $3{\sim}8\;wt%$ NaCl, and Th ranged $177{\sim}304^{\circ}C$ also showing Te $-54{\sim}-29^{\circ}C$. (3) Type III inclusions contain a halite daughter mineral with $31{\sim}40\;wt%$ NaCl, Th $230{\sim}328^{\circ}C$. More than 90% of Type III homogenize by halite dissolution and are spatially associated with silicate melt inclusions. (4) Type IV inclusions are $CO_{2}$-bearing containing various daughter minerals such as sylvite and/or halite. The density of $CO_{2}$ system within the Type IV is $0.80{\sim}0.75\;g/cm^{3}$, Th $190{\sim}317^{\circ}C$, and salinity $2{\sim}35\;wt%$ NaCl. Type III fluid inclusions, considered as the earliest fluid, formed from the fluid exsolved from the crystallizing pegmatite. It is suggested that Type II fluid in the central part of tourmaline were exsolved earlier than Type I fluids in the margin indicating salinity fluctuation during the growth of tourmaline. It implies the fluctuation of the pressure since the salinity of fluid exsolved from the crystallizing melt is governed by the pressure. The last fluid was Type IV, which may be derived from the nearby limestone and metasedimentary rocks. It is suggested that Daeyou pegmatite containing muscovite without miarolitic cavities was formed by the partial melting resulted from the regional metamorphism. Subsequently, the exsolving fluids from the crystallizing melt were trapped in tourmaline at high pressure condition. The exsolved fluids contain various components such as $CaCl_{2}\;and\;MgCl_{2}$ as well as NaCl and KCl. The exsolution began at least at $2.7{\sim}5.3\;kbar\;and\;230{\sim}328^{\circ}C$ with the pressure fluctuation.

LASER WELDING OF SINGLE CRYSTAL NICKEL BASE SUPERALLOY CMSX-4

  • Yanagawa, Hiroto;Nakamura, Daisuke;Hirose, Akio;Kobayashi, Kojiro F.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.193-198
    • /
    • 2002
  • In 1his paper, applicability of laser welding to joining process of single crystal nickel base superalloy turbine blades was investigated. Because heat input of laser welding is more precisely controlled 1han TIG welding, it is possible to optimize solidification microstructure of the welds. Since in single crystal nickel base superalloy the crystal orientation have a significant effect on the strength, it is important to control the solidification microstructure in the fusion zone. A single crystal nickel base supera1loy, CMSX-4, plates were bead-on welded and butt welded using a $CO_2$ laser. The effects of microstructure and crystal orientation on properties of the weld joints were investigated. In bead-on weldling, welding directions were deviated from the base metal [100] direction by 0, 5, 15 and 30 degrees. The welds with deviation angles of 15 and 30 degrees showed fusion zone transverse cracks. As the deviation angles became larger, the fusion zone had more cracking. In the cross section microstructure, the fusion zone grains in 0 and 5 degrees welds grew epitaxially from the base metal spins except for the bead neck regions. The grains in the bead neck regions contained stray crystals. As deviation angles increased, number of the stray crystals increased. In butt welding, the declinations of the crystal orientation of the two base metals varied 0, 5 and 10 degrees. All beads had no cracks. In the 5 degrees bead, the cross section and surface microstructures showed that the fusion zone grains grew epitaxially from the base metal grains. However, the 10 degrees bead, the bead cross section and surface contained the stray crystals in the center of the welds. Orientations of the stray crystals accorded with the heat flow directions in the weld pool. When the welding direction was deviated from the base metal [100] direction, cracks appeared in the area including the stray crystals. The cracks developed along the grain boundaries of the stray crystals with high angles in the final solidification regions at the center of the welds. The fracture surfaces were covered with liquid film. The cracks, therefore, found to be solidification cracks due to the presence of low melting eutectic. As the results, in both bead-on welding and butt welding the deviation angles should be control within 5 degrees for preventing the fusion zone cracks. To investigate the mechanical properties of the weld joints, high temperature tensile tests for bead-on welds with deviation angles of 0 and 5 degrees and the butt welds with dec1ination angles of 0, 5 and 10 degrees were conducted at 1123K. The the tensile strength of all weld joints were more 1han 800MPa that is almost 80% of the tensile strength of the base metal. The strength of the laser weld joints were more than twice that of tue TIG weld joints with a filler metal of Inconel 625. The results reveals 1hat laser welding is more effective joining process for single crystal nickelbase superalloy turbine blades 1han TIG welding.

  • PDF