• Title/Summary/Keyword: eutectic Si

Search Result 183, Processing Time 0.023 seconds

The effects of Mg2Si(p) on microstructure and mechanical properties of AA332 composite

  • Zainon, Fizam;Ahmad, Khairel Rafezi;Daud, Ruslizam
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.55-66
    • /
    • 2016
  • This paper describes a study on the effects of $Mg_2Si_{(p)}$ addition on the microstructure, porosity, and mechanical properties namely hardness and tensile properties of AA332 composite. Each composite respectively contains 5, 10, 15, and 20 wt% reinforcement particles developed by a stir-casting. The molten composite was stirred at 600 rpm and melted at $900^{\circ}C{\pm}5^{\circ}C$. The $Mg_2Si$ particles were wrapped in an aluminum foil to keep them from burning when melting. The findings revealed that the microstructure of $Mg_2Si_{(p)}/AA332$ consists of ${\alpha}$-Al, binary eutectic ($Al+Mg_2Si$), $Mg_2Si$ particles, and intermetallic compound. The intermetallic compound was identified as Fe-rich and Cu-rich, formed as polygonal or blocky, Chinese script, needle-like, and polyhendrons or "skeleton like". The porosity of $Mg_2Si_{(p)}/AA332$ composite increased from 8-10% and the density decreased from 9-12% from as-cast. Mechanical properties such as hardness increased for over 42% from as-cast and the highest UTS, elongation, and maximum Q.I were achieved in the sample of 10% $Mg_2Si$. The study concludes that combined with AA332, the amount of 10 wt% of$Mg_2Si$ is a suitable reinforcement quantity with the combination ofAA332.

EFFECT OF ADDED Si ON DENSIFICATION OF Ni-AI INTERMETALLIC COATING ON SPHEROIDAL GRAPHITE CAST IRON SUBSTRATES

  • Kim, Tetsuro ata;Keisuke Uenishi;Akira Ikenaga;Kojiro F. Kobayashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.726-731
    • /
    • 2002
  • Reaction synthesis is a process to form ceramics, intermetallics and their composites from elemental powder mixture. Application of this process to a surface modification techniques has a possibilities to enable the process at a lower temperature or for a shorter time, although synthesized materials are likely to include voids and unreacted elements. This paper intend to examine the effect of Si addition to the mixture of Al and Ni on the densification of synthesized Ni-Al intermetallic compounds and to evaluate the surface properties of obtained coatings. By the Si addition, exothermic reaction temperature to form Ni-Al intermetallic was lowered to be below the melting point of Al. Si soluted $Al_3$Ni$_2$, $Al_3$Ni and $Al_{6}$Ni$_3$Si were mainly formed in the coating layer when powder mixture was heated to 973K for 300s. Besides, densification was enhanced by increasing hot press pressure, Si additions and heating rate. When the composition of eutectic Al-Si reaches 78%, void ratio of sintered compact reduced to 0.4%. It is caused by higher flowability of Al-Si liquid phase generated and its infiltration into the void. Since the hardness of NiAl(Si) compound (about 600HV) formed in the coating layer is higher than that of Ni-Al compound (about 400HV), coating layer with high density and superior wear property is obtained by hot press using reaction synthesis from Al-Ni-Si powder mixture.

  • PDF

Effect of Solution Treatment Conditions on the Microstructure and Hardness Changes of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu Alloys (Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu 합금의 미세조직 및 경도 변화에 미치는 용체화 처리 조건의 영향)

  • Sung-Bean Chung;Min-Su Kim;Dae-Up Kim;Sung-Kil Hong
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.337-346
    • /
    • 2022
  • In order to optimize the solution treatment conditions of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu alloys, a series of heat treatment experiments were conducted under various solution treatment times up to 7 hours at 545℃, followed by a microstructural analysis using optical microscopy, FE-SEM, and Brinell hardness measurements. Rapid coarsening of eutectic Si particles was observed in the alloys during the first 3 hours of solution treatment but the size of those Si particles did not change at longer solution treatment conditions. Meanwhile, the degree of spheroidisation of eutectic Si particles increased until the solution treatment time was increased up to 7 hours. Q-Al5Cu2Mg8Si6 andθ-Al2Cu were observed in as-cast Cu-containing Al alloys but the intermetallic compounds were dissolved completely after 3 hours of solution treatment at 545℃. Depending on the initial Mg composition of the Al alloys, π-Al8FeMg3Si either disappeared in the alloy with 0.3wt% of Mg content after 5 hours of solution treatment or remained in the alloy with 0.5wt% of Mg content after 7 hours of solution treatment time. Mg and Cu content in the primary-α phase of the Al alloys increased until the solution treatment time reached 5 hours, which was in accordance with the dissolution behavior of Mg or Cu-containing intermetallic compounds with respect to the solution treatment time. From the results of microstructural changes in the Al-7Si-Mg-Cu alloys during solution treatment, it was concluded that at least 5 hours of solution treatment at 545℃ is required to maximize the age hardening effect of the present Al alloys. The same optimal solution treatment conditions could also be derived from Brinell hardness values of the present Al-7Si-Mg-Cu alloys measured at different solution treatment conditions.

Fabrication of Nb-Si-B Alloys Using the Pulverized Nb-T2 Alloy Powder (Nb-T2 합금의 파쇄분말을 사용한 Nb-Si-B계 합금의 제조)

  • Cho, Min-Ho;Kim, Sung-Jun;Kang, Hyun-Ji;Oh, Sung-Tag;Kim, Young Do;Lee, Seong;Suk, Myung Jin
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.299-304
    • /
    • 2019
  • Nb-Si-B alloys with Nb-rich compositions are fabricated by spark plasma sintering for high-temperature structural applications. Three compositions are selected: 75 at% Nb (Nb0.7), 82 at% Nb (Nb1.5), and 88 at% Nb (Nb3), the atomic ratio of Si to B being 2. The microstructures of the prepared alloys are composed of Nb and $T_2$ phases. The $T_2$ phase is an intermetallic compound with a stoichiometry of $Nb_5Si_{3-x}B_x$ ($0{\leq}x{\leq}2$). In some previous studies, Nb-Si-B alloys have been prepared by spark plasma sintering (SPS) using Nb and $T_2$ powders (SPS 1). In the present work, the same alloys are prepared by the SPS process (SPS 2) using Nb powders and hypereutectic alloy powders with composition 67at%Nb-22at%Si-11at%B (Nb67). The Nb67 alloy powders comprise $T_2$ and eutectic ($T_2+Nb$) phases. The microstructures and hardness of the samples prepared in the present work have been compared with those previously reported; the samples prepared in this study exhibit finer and more uniform microstructures and higher hardness.

Characteristics of TiO2 Thin Films Fabricated by R.E, Magnetron Sputtering (R.F Magnetron Sputtering법으로 제조한 TiO2 박막의 특성)

  • Chu Y. H.;Choi D. K.
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.821-827
    • /
    • 2004
  • Titanium oxide thin films were prepared on Si(100) substrates by R.F. magnetron reactive sputtering at $30\sim200watt$ R.F power range, and annealed at $600^{\circ}C\sim800^{\circ}C$ for 1 hour. The properties of $TiO_2$ thin films were analyzed using x-ray, ${\alpha}-step$, ellipsometer, scanning electron microscopy, and FT-IR spectrometer. Upon in-situ depositions, the initial phase of $TiO_2$ thin film showed non-crystalline phase at R.F. power $30\sim100$ watt. The crosssection of $TiO_2$ thin films were sbserved to be the columnar structure. With the increasing R.F power and annealing temperature, the grain size, crystallinity, refractive index, and void size of titanium oxides showed a tended to increase. The FT-IR transmittance spectra of titanium oxide thin films have the obsorption band of Ti-O bond, Si-O bond, Si-O-Ti bond and O-H bond. With the increase of R.F. power and annealing temperature, these films have the stronger bond structures. It is considered that such a phenomena is due to phase transition and good crystallinity

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.296-303
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore for its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

Microstructural and Mechanical Characteristics of Al-Si-Cu Die Casting Alloy for Engine Mount Bracket (엔진 마운트 브라켓용 다이캐스팅 Al-Si-Cu 합금의 미세조직과 기계적 특성)

  • Chyun, In-Bum;Hong, Seung-Pyo;Kim, Chung-Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.6
    • /
    • pp.281-287
    • /
    • 2014
  • Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for engine mount bracket prepared by gravity casting (as-cast) and die-casting (as-diecast) process have been investigated. For the microstructural characterization, the inductively coupled plasma mass spectrometry (ICP-MS), optical microscope (OM), scanning electron microscope (SEM) and electron probe microanalysis (EPMA) analyses are conducted. For the intermetallic phases, the X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) are also conducted with quantitative and qualitative analysis. Micro Vickers hardness and static tensile test are achieved in order to measure mechanical properties of alloys. Secondary dendrite arm spacing (SDAS) of as-cast and as-diecast show 37um and 18um, respectively. A large amount of coarsen eutectic Si, $Al_2Cu$ intermetallic phase and Fe-rich phases are identified in the Al-6Si-2Cu alloy. Mechanical properties of gravity casting alloy are much higher than those of die-casting alloy. Especially, yield strength and elongation of gravity casting alloy show 2 times higher than die-casting alloy. After shot peening, shot peening refined the surface grains and Si particles of the alloys by plastic deformation. The surface hardness value shows that shot peening alloy has higher value than unpeening alloy.

Effect of Heat Treatment on Microstructure and Mechanical Properties of Electromagnetic Duo-Cast Al Hybrid Material

  • Suh, Jun Young;Park, Sung Jin;Kwon, Do-Kyun;Chang, Si Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.499-505
    • /
    • 2018
  • This investigates the microstructure and mechanical properties of Al hybrid material prepared by electromagnetic duo-casting to determine the effect of heat treatment. The hybrid material is composed of an Al-Mg-Si alloy, pure Al and the interface between the Al-Mg-Si alloy and pure Al. It is heat-treated at 373, 573 and 773K for 1h and T6 treated (solution treatment at 773K for 1h and aging at 433K for 5h). As the temperature increases, the grain size of the Al-Mg-Si alloy in the hybrid material increases. The grain size of the T6 treated Al-Mg-Si alloy is similar to that of one heat-treated at 773K for 1h. The interface region where the micro-hardness becomes large from the pure Al to the Al-Mg-Si alloy widens with an increasing heat temperature. The hybrid material with a macro-interface parallel to the tensile direction experiences increased tensile strength, 0.2 % proof stress and the decreased elongation after T6 heat treatment. On the other hand, in the vertical direction to the tensile direction, there is no great difference with heat treatment. The bending strength of the hybrid material with a long macro-interface to the bending direction is higher than that with a short macro-interface, which is improved by heat treatment. The hybrid material with a long macro-interface to the bending direction is fractured by cracking through the eutectic structure in the Al-Mg-Si alloy. However, in the hybrid material with a short macro-interface, the bending deformation is observed only in the limited pure Al.

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.350-352
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore fur its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

  • PDF

EFFECT OF T6 HEAT TREATMENT ON THE SCRATCH WEAR BEHAVIOR OF EXTRUDED Al-12WT.%Si ALLOY

  • YEON-JI KANG;JONG-HO KIM;JONG-IL HWANG;KEE-AHN LEE
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.2
    • /
    • pp.617-622
    • /
    • 2019
  • This study investigated the effect of T6 heat treatment on the microstructure and scratch wear behavior of hypoeutectic Al-12wt.%Si alloy manufactured by extrusion. Microstructural observation identified spherical eutectic Si phases before and after the heat treatment of alloys (F, T6). Phase analysis confirmed Al matrix and Si phase as well as Al2Cu and Al3Ni, Mg2Si in both alloys. In particular, Al2Cu was finer and more evenly distributed in T6 alloy. This resulted in Vickers hardness of T6 alloy that was 2.3 times greater compared to F alloy. The scratch wear test was conducted using constant load scratch test (CLST) mode and multi-pass scratch test (MPST) mode. The scratch coefficient and worn out volume obtained by such were used to evaluate wear properties before and after heat treatment. In the case of T6 alloy, its scratch coefficient was lower than F alloy in all load ranges. After 15 repeated tests to measure worn out volume, F alloy and T6 alloy measured 1.2×10-1 mm3 and 7.8×10-2 mm3, respectively. In other words, the wear resistance of T6 alloy were confirmed to be better than those of F alloy. In addition, this study attempted to identify the microstructural factors that contribute to the better scratch wear resistance of T6 alloy and wear mechanism from surface and cross-section observations after the wear tests.