• Title/Summary/Keyword: euler equation

Search Result 446, Processing Time 0.021 seconds

CENTRAL SCHEMES WITH LAX-WENDROFF TYPE TIME DISCRETIZATIONS

  • Shin, Su-Yeon;Hwang, Woon-Jae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.873-896
    • /
    • 2011
  • The semi-discrete central scheme and central upwind scheme use Runge-Kutta (RK) time discretization. We do the Lax-Wendroff (LW) type time discretization for both schemes. We perform numerical experiments for various problems including two dimensional Riemann problems for Burgers' equation and Euler equations. The results show that the LW time discretization is more efficient in CPU time than the RK time discretization while maintaining the same order of accuracy.

Adaptive control for two-link flexible robot arm (2-링크 유연한 로보트 팔에 대한 적응제어)

  • 한종길;유병국;임규만;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.8-13
    • /
    • 1993
  • This paper presents deterministic and adaptive control laws for two-link flexible arm. The flexible arm has considerable structural flexibility. Because of its flexbility, dynamic equations are very complex and difficult to get, dynamic equations for two-link flexible arm are derived from Bernoulli-Euler beam theory and Lagrangian equation. Using the fact that matrix is skew symmetric, controllers which have a simplified structure with less computational burden are proposed by using Lyapunov stability theory.

  • PDF

Unsteady Compressible Flow past an Airfoil near the Moving Surface (파형 곡면 위를 비행하는 2차원 WIG익형의 비정상 압축성 유동 해석)

  • Im Y. H.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.191-196
    • /
    • 1998
  • A two-dimensional airfoil flying over a wavy wall is calculated by solving the unsteady Euler equation. Unsteady Transonic flow over an NACA00012 airfoil in pitching motion has been computed for code validation. Some numerical results for NACA6409 airfoil under different wave number, wave length, fly height are presented. The numerical results show the variation of lift and pitching moment coefficients are increased as wave length decrease.

  • PDF

CONVERGENCE OF FINITE DIFFERENCE METHOD FOR THE GENERALIZED SOLUTIONS OF SOBOLEV EQUATIONS

  • Chung, S.K.;Pani, A.K.;Park, M.G.
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.515-531
    • /
    • 1997
  • In this paper, finite difference method is applied to approximate the generalized solutions of Sobolev equations. Using the Steklov mollifier and Bramble-Hilbert Lemma, a priori error estimates in discrete $L^2$ as well as in discrete $H^1$ norms are derived frist for the semidiscrete methods. For the fully discrete schemes, both backward Euler and Crank-Nicolson methods are discussed and related error analyses are also presented.

  • PDF

COMPARISON BETWEEN THE POSITIVE SCHEMES AND WENO FOR HIGH MACH JETS IN 1D

  • Ha, Young-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.609-621
    • /
    • 2007
  • Comparison of high Mach number jets using positive schemes and Weighted ENO methods is considered in this paper. The positive scheme introduced by [11, 14] and Weighted ENO [9, 10] have allowed us to simulate very high Mach numbers more than Mach 80. Simulations at high Mach numbers and with radiative cooling are essential for achieving detailed agreement with astrophysical images.

Forced Vibration of Elastically Restrained Valve-pipe System (탄성지지된 밸브 배관계의 강제진동 특성)

  • Son, In-Soo;Hur, Kwan-Do
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.679-680
    • /
    • 2011
  • The Forced vibration characteristics of elastically restrained pipe conveying fluid with the attached mass are investigated in this paper. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Hamilton's principle. The effect of attached mass and spring constant on forced vibration of pipe system is studied. Also, the critical flow velocities and stability maps of the valve-pipe system are obtained as each parameters.

  • PDF

Free Vibration Characteristics of Partially Embedded Piles (부분근입된 말뚝의 자유진동 특성)

  • 신성철;진태기;오상진;박광규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.435-440
    • /
    • 2002
  • The free vibration of partially embedded piles is investigated. The pile model is based on the Bernoulli-Euler beam theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equation for the free vibrations of such members is solved numerically The piles with one typical end constraint (clamped/hinged/free) and the other hinged end with rotational spring are applied in numerical examples. The lowest three natural frequencies are calculated over a range of non-dimensional system parameters: the rotational spring parameter, the relative stiffness and the embedded ratio.

  • PDF

Free Vibration of Beam-Columns on Non-Homogeneous Foundation (비균질 탄성지반 위에 놓인 보-기둥의 자유진동)

  • 이병구;오상진;이태은
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.206-211
    • /
    • 1999
  • The purpose of this study is to investigate the natural frequencies and mode shapes of beam-columns on the non-homogeneous foundaion. The beam model is based on the classical Bernoulli-Euler beam theory. The linear foundation modulus is chosen as the non-homogeneous foundation in this study . The differentidal equation goeverning free vibrations of such beam-columns subjected to axial load is derived and solved numerically for calculting the natural frquencies and mode shapes. In numerical fivekinds of end constraint are considered, and the lowest four natural frquencies and corresponding mode shape are obtained as the non-dimensional forms.

  • PDF

An Axially Marching Scheme for Internal Waves

  • In-Joon,Suh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.2
    • /
    • pp.1-10
    • /
    • 1988
  • An axially marching numerical method is developed for the simulation of the internal waves produced by translation of a submersed vehicle in a density-stratified ocean. The method provides for the direct solution of the primitive variables [$\upsilon,\;p,\;\rho$] for the nonlinear and steady state three-dimensional Euler's equation with a non-constant density term in the vehicle-fixed cartesian co-ordinate system. By utilizing a known potential flow around the vehicle for an estimate of the axial velocity gradient, the present parabolic algorithm local upstreamwise disturbances and axial velocity variation.

  • PDF

Exact solution for asymmetric transient thermal and mechanical stresses in FGM hollow cylinders with heat source

  • Jabbari, M.;Vaghari, A.R.;Bahtui, A.;Eslami, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.551-565
    • /
    • 2008
  • Transient solution of asymmetric mechanical and thermal stresses for hollow cylinders made of functionally graded material is presented. Temperature distribution, as function of radial and circumferential directions and time, is analytically obtained, using the method of separation of variables and generalized Bessel function. A direct method is used to solve the Navier equations, using the Euler equation and complex Fourier series.