• Title/Summary/Keyword: euler angle

Search Result 140, Processing Time 0.023 seconds

Numerical Study about Initial Behavior of an Ejecting Projectile for Varying Flight Conditions (비행 조건 변화에 따른 사출 운동체의 초기 거동에 관한 수치적 연구)

  • Jo, Sung Min;Kwon, Oh Joon;Kwon, Hyuck-Hoon;Kang, Dong Gi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.517-526
    • /
    • 2019
  • In the present study, unsteady flows around a projectile ejected from an aircraft platform have been numerically investigated by using a three dimensional compressible RANS flow solver based on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom(6DOF) equations of motion with Euler angles and a chimera technique. Initial behavior of the projectile for varying conditions, such as roll and pitch-yaw command on the control surface of the projectile, flight Mach number, and platform pitch angle, was investigated. The ejection stability of the projectile was degraded as Mach number increases. In the transonic condition, the initial behavior of the projectile was found to be unstable as increase of platform pitch angle. By applying the command to control surfaces of the projectile, initial stability was highly enhanced. It was concluded that the proposed simulation data are useful for estimating the ejection behavior of a projectile in design phase.

Hydroelastic Responses for a Ship Advancing in Waves (파랑중 전진하는 선박의 유탄성 응답)

  • 이호영;임춘규;정형배
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.16-21
    • /
    • 2003
  • The very large container ships have been built recently and those ships have very small structural rigidity compared with the other conventional ships. As a result, the destruction of ship hull is occurred by the springing including to warping phenomena due to encounter waves. In this study, the solutions of hydrodynamic coefficients are obtained by solving the three dimensional source distribution method and the forward speed Green function representing a translating and pulsating source potential for infinite water depth is used to calculating the integral equation. The vessel is longitudinally divided into various sections and the added mass, wave damping and wave exciting forces of each section is calculated by integrating the dynamic pressures over the mean wetted section surface. The equations for six degree freedom of motions is obtained for each section in the frequency domain and stiffness matrix is calculated by Euler beam theory. The computations are carried out for very large ship and effects of bending and torsional ridigity on the wave frequency and angle are investigated.

Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles

  • Yoo, Dong-Wan;Oh, Hyon-Dong;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.167-174
    • /
    • 2010
  • The design, dynamics, and control allocation of tri-rotor unmanned aerial vehicles (UAVs) are introduced in this paper. A trirotor UAV has three rotor axes that are equidistant from its center of gravity. Two designs of tri-rotor UAV are introduced in this paper. The single tri-rotor UAV has a servo-motor that is installed on one of the three rotors, which enables rapid control of its motion and its various attitude changes-unlike a quad-rotor UAV that depends only on the angular velocities of four rotors for control. The other design is called 'coaxial tri-rotor UAV,' which has two rotors installed on each rotor axis. Since the tri-rotor type of UAV has the yawing problem induced from an unpaired rotor's reaction torque, it is necessary to derive accurate dynamic and design control logic for both single and coaxial tri-rotors. For that reason, a control strategy is proposed for each type of tri-rotor, and nonlinear simulations of the altitude, Euler angle, and angular velocity responses are conducted by using a classical proportional-integral-derivative controller. Simulation results show that the proposed control strategies are appropriate for the control of single and coaxial tri-rotor UAVs.

Optimal Home Positioning Algorithm for a 6-DOF Eclipse-II Motion Simulator (6-자유도 Eclipse-II 모션 시뮬레이터의 최적 원점 복귀 알고리즘)

  • Shin, Hyun-Pyo;Kim, Jong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.441-448
    • /
    • 2012
  • This paper describes the optimal home positioning algorithm of Eclipse-II, a new conceptual parallel mechanism for motion simulator. Eclipse-II is capable of translation and 360 degrees continuous rotation in all directions. In unexpected situations such as emergency stop, riders have to be resituated as soon as possible through a shortest translational and rotational path because the return paths are not unique in view of inverse kinematic solution. Eclipse-II is man riding. Therefore, the home positioning is directly related to the safety of riders. To ensure a least elapsed time, ZYX Euler angle inverse kinematics is applied to find an optimal home orientation. In addition, the subsequent decrease of maximum acceleration and jerk values is achieved by combining the optimal return path function with cubic spline, which consequently reduces delivery force and vibration to riders.

Numerical Analysis on the Flue Gas Flow and Slurry Behavior in the Absorber of a Flue Gas Desulphurization (FGD) System (배연탈황설비 흡수탑 내 연소가스 및 슬러리의 거동에 관한 수치해석적 연구)

  • Choi, Choeng-Ryul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.478-486
    • /
    • 2007
  • Numerical analysis had been performed to understand flow characteristics of the flue gas and slurry in the absorber of a flue gas desulphurization (FGD) system using computational fluid dynamics (CFD) technique. Two-fluid(Euler-Lagrangian) model had been employed to simulate physical phenomenon, which slurry particles injected through slurry spray nozzles fall down and bump into the flue gas inflowing through inlet duct. It was not necessary to adopt pre-defined pressure drop inside the absorber because interaction between flue gas and slurry particles was considered. Hundreds of slurry spray nozzles were considered with the spray velocity at the nozzles, swirl velocity and spreading angle. The results note that the flow disturbance of flue gas is found at the bottom of the absorber, and the current rising with high speed stream is observed in the opposite region of the inflow duct. The high speed stream is reduced as the flue gas goes up, because the high speed stream of flue gas dumps falling slurry particles due to momentum exchange between flue gas and slurry particles. In spite of some disproportion in slurry distribution inside the absorber, escape of slurry particles from the absorber facility is not observed. The pressure drop inside the absorber is mainly occurred at the bottom section.

Design of Multiple Sliding Surface Control System for a Quadrotor Equipped with a Manipulator (매니퓰레이터 장착 쿼드로터를 위한 다중 슬라이딩 평면 제어의 시스템 설계)

  • Hwang, Nam Eung;Park, Jin Bae;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.502-507
    • /
    • 2016
  • In this paper, we propose a tracking control method for a quadrotor equipped with a 2-DOF manipulator, which is based on the multiple sliding surface control (MSSC) method. To derive the model of a quadrotor equipped with a 2-DOF manipulator, we obtain the models of a quadrotor and a 2-DOF manipulator based on the Lagrange-Euler formulation separately - and include the inertia and the reactive torque generated by a manipulator when these obtained models are combined. To make a quadrotor equipped with a manipulator track the desired path, we design a double-loop controller. The desired position is converted into the desired angular position in the outer controller and the system's angle tracks the desired angular position through the inner controller based on the MSSC method. We prove that the position-tracking error asymptotically converges to zero based on the Lyapunov stability theory. Finally, we demonstrate the effectiveness of the proposed control system through a computer simulation.

Aerodynamic Design and Analysis of a Centrifugal Compressor in a 40kW Class Turbogenerator Gas Turbine (40kW급 터보제너레이터용 원심압축기의 공력설계 및 유동해석)

  • Oh, J.S.;Yoon, E.S.;Cho, S.Y.;Oh, K.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.02a
    • /
    • pp.128-135
    • /
    • 1998
  • Procedures and results of aerodynamic design of a centrifugal compressor are presented for development of a 40kW class turbogenerator gas turbine. Specification of higher level of total pressure ratio of 4 and total efficiency of $80\%$ requires advanced methods of design and analysis. In the meanline design/analysis, a method with conventional loss modeling and a method with the two-zone model are alternately used for more reliable prediction. In the impeller blade generation, a series of Bezier curve are combined to produce meridional contours and distributions of blade camber angle and blade thickness. Intermediate profiles of blades are repeatedly produced and changed to be finally fixed through quasi-three dimensional Euler flow analysis. Three dimensional compressible turbulent flow analysis is then performed for the impeller to be confirmed in the final step of design. Satisfactory results in the aerodynamic performance are obtained, which assures that there is no need of aerodynamic re-design.

  • PDF

A Study of Computation Methods for Dynamic Damping Coefficients of an Airship (비행선의 동적 감쇠계수 계산 방법에 관한 연구)

  • Park, Su Hyeong;Jang, Byeong Hui;Kim, Yu Jin;Gwon, Jang Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.10-17
    • /
    • 2003
  • Dynamic stability is critically required to stabilize an airship which is statically unstable. Numerical computations were performed in order to support and confirm the foced oscillation wind tunnel tests. To analyze the low-speed flow filed around the airship, a low-Mach number preconditioned method was applied. Using two computation methods, variations of the dynamic damping coefficients were examined. Numerical results show that it is dynamically stable for three directional moments, but unstable for normal or side force. It is revealed that the damping coefficients are more sensitive to the direction of the angular rate than the angle of attack or the magnitude og angular rate.

Separation Motion Analysis of Staging System (단분리 시스템의 분리 거동 해석)

  • Yun, Yong-Hyeon;Hong, Seung-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.1-10
    • /
    • 2006
  • Separation motion analysis of staging system is conducted using combined analysis programs, which include unsteady aerodynamic analysis codes and dynamic motion analysis tools. In this study, the analysis is for the long-rang missile staging system. The purpose of this study is to verify the safety and reliance of the proposed staging system, and to find out the influence of angle of attack perturbation on staging. A structured parallel overset mesh called Chimera grid is used for the simulation of unsteady supersonic Euler flow solver. In addition, unsteady dynamic simulations are also performed.

Papers : Attitude Determination Algorithm of LEO Satellites in the Sun - Acquisition Mode (논문 : 태양획득 모드에서 저궤도 위성의 자세결정 알고리즘)

  • An,Hyo-Seong;Lee,Seon-Ho;Lee,Seung-U;Chae,Jang-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.82-87
    • /
    • 2002
  • The attitude determination in LEO Satellite like KOMPSAT is one of the most important issues for Sun-Acquisition. Particularly, in KOMPSAT, the roll axis direction can be determined since the sun sensor gives the information on the Euler angle for pitch and yaw axes in Sun-Acquisition mode. In other words, it is the problem to determine the two unknown axes direction with one axis knowledge. This paper proposes a new effective method for attitude determination of general LEO satellites when one axis information is avilable and proves its usefulness throughout the simulation.