• Title/Summary/Keyword: etiolation

Search Result 17, Processing Time 0.048 seconds

Regulation of Plant Growth by Light-Growth Hormone Interactions

  • Park, Chung-Mo
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.94-97
    • /
    • 2002
  • Light is one of the most important environmental factors that influence plant growth and development. It does not function independently but exerts its role through coordinated interactions with intrinsic developmental programs, such as hormonal regulation. One typical example is hypocotyl growth in which light signals are modulated through growth hormones. However, the underlying molecular mechanisms are largely unknown. We demonstrated that brassinosteroids play an important role in the light signal transduction in etiolated hypocotyl growth. A light-responsive Ras-like G-protein, Pra2 from pea, physically and functionally interacts with a cytochrome P450 that specifically catalyzes C-2 hydroxylation in brassinosteroid biosynthesis. The cytochrome P450 expression, along with Pra2, is induced in the dark and predominantly localized in the rapidly elongating zone of etiolated pea epicotyls. Transgenic plants with a reduced level of Pra2 exhibit a dark-specific dwarfism, which is completely rescued by brassinosteroid application. On the contrary, overexpression of the cytochrome P450 results in enhanced hypocotyl growth even in the light, which phenocopies the etiolated hypocotyl growth. It is therefore envisioned that Pra2 is a molecular switch that mediates the crosstalk between light and brassinosteroids in the etiolation process.

  • PDF

Virulence of Xanthomonas translucens pv. poae Isolated from Poa annua

  • Chaves, Arielle;Mitkowski, Nathaniel
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.93-98
    • /
    • 2013
  • Bacterial wilt is a vascular wilt disease caused by Xanthomonas translucens pv. poae that infects Poa annua, a grass that is commonly found on golf course greens throughout the world. Bacterial wilt causes symptoms of etiolation, wilting, and foliar necrosis. The damage is most prevalent during the summer and the pathogen can kill turf under conditions optimal for disease development. Fifteen isolates of X. translucens pv. poae were collected from northern regions in the United States and tested for virulence against P. annua. All 15 isolates were pathogenic on P. annua, but demonstrated variable levels of virulence when inoculated onto P. annua under greenhouse conditions. The isolates were divided into two virulence groups. The first group containing four isolates generally resulted in less than 40% mortality following inoculation. The second group, containing the other eleven isolates, produced between 90 and 100% mortality following inoculation. These results suggest that differences in the virulence of bacterial populations present on a golf course may result in more or less severe amounts of observed disease.

Effect of in vitro Culture Condition and Lines on Growth Pattern of Lateral Bud from Nodal Cutting of Phalaenopsis Flower Stalk (팔레높시스 기내 화경 배양조건 및 계통이 액아의 발육형태에 미치는 영향)

  • 김미선;은종선;이영란
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.4
    • /
    • pp.189-195
    • /
    • 2001
  • This study was carried out to investigate the effects of in vitro culture condition and among lines on growth pattern of lateral buds from nodal cuttings of Phalaenopsis flower stalks. The ratio of bud growing into shoot from nodal cuttings of flower stalks were 90.9% and 54.4% on MS and hyponex medium, respectively. The number of buds grown vegetatively were increased remarkably on the MS medium containing 5 mg/L BA. The rate of buds grown vegetatively was higher in basal and middle parts than in upper part of flower stalks. The flower stalk sections cultured at 25~28$^{\circ}C$ showed the highest ratio of vegetative growth. Medium contamination was decreased by pretreatment of etiolation to the flower stalk. However, the pretreatment did not show specific effects on shoot development and reduction of phenolic compound. Average shoot number which was formed from flower stalk segments in 27 of 30 accessions were 3.17, while high number of shoots were obtained from Phal. 3020 and Phal. 3039. The growth pattern of lateral buds in F$_1$hybrids was similar to that of their parents.

  • PDF

PHOTOMORPHOGENIC MUTANTS OF TOMATO

  • Kendrick, Richard E.
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1994.09a
    • /
    • pp.41-51
    • /
    • 1994
  • Tomato (Lycopersicon esculentum Mill.) has been chosen as a model species for the study of hotomorphogenesis. The aurea (au) and yellow-green-2 (yg-2) mutants which are severely photochrome deficient appear to be phytochrome chromophore mutants. Mutants modified with respect to specific members of the phytochrome gene family: the far-red light-insensitive mutant (fri, for phytochrome A) and the temporarily red light-insensitive mutant (tri, for phytochrome B1) have been identified. Mutants that exhibit an exaggerated phytochrome response are putative transduction-chain mutants affecting an amplification step in phytochrome signal transduction. These mutants are being used to understand the complexities of juvenile anthocyanin in the hypocotyl during seedling de-etiolation.

  • PDF

Injury Symptom of Egg Plant Grown in a High pH Rockwool Amended with Ammonium Phosphate (인산암모늄 처리 고산도 암면에서 자란 가지생육장해증상)

  • Kim, Yoo-Hak;Lee, Hyeong-Yong;Kim, Myung-Sook;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.975-977
    • /
    • 2010
  • Ammonium nitrogen is volatilized as ammonia at high pH soil. This study was conducted to observe an injury cause of egg plant grown in a high pH rockwool amended with ammonium phosphate. The etiolation symptom (yellowing) was appeared on veins of a leaf but not in healthy root when nutrient solution containing ammonium phosphate in addition to essential elements was applied in a top soil of which pH was 7.8. However, the same symptom did not appeared in the egg plant from the top soil in which the nutrition solution containing potassium phosphate instead of ammonium phosphate was applied. pHs were similar between these two different solutions. This revealed that the injury was caused by ammonia gas.

Effects of Light on the Expression of 1-Aminocyclopropane-1-Carboxylic Acid Synthase and Oxidase Genes in Mung Bean Hypocotyls

  • Song, Ju-Dong;Lee, Dong-Hee;Rhew, Tae-Hyong;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • v.10 no.2
    • /
    • pp.189-193
    • /
    • 2003
  • The effects of light on the regulation of ethylene biosynthesis during development of mung bean seedlings were investigated by monitoring the differential expression of seven 1-aminocyclopropane-l-carboxylate (ACC) synthase and two ACC oxidase genes. Among them, only the expression of VR-ACS1, VR-ACS6, VR-ACS7, VR-ACO1 and VR-AC02 was observable in etiolated mung bean hypocotyls. When the seedlings were de-etiolated for 1 d under a light/dark cycle of 16 h/8 h, the expression of VR-ACS6, VR-ACS7 and VR-ACO2 was controlled negatively by light. The expression of VR-ACS1 showed a tendency to increase until 6 h after a dark-to-light transition and then decreased at 12 h. On the other hand, the expression of VR-ACO1 was mostly constitutive up to 12 h after the dark-to-light transition. The opening of hypocotyl hooks during de-etiolation in the light was stimulated by the inhibition of the action of endogenous ethylene in the presence of 1-MCP. These results suggest that the negative regulation of light on the expression of ACC synthase and ACC oxidase genes eventually results in the inhibition of ethylene production with an acceleration of the opening of apical hooks.

  • PDF

Post-Translational Regulation of miRNA Pathway Components, AGO1 and HYL1, in Plants

  • Cho, Seok Keun;Ryu, Moon Young;Shah, Pratik;Poulsen, Christian Peter;Yang, Seong Wook
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.581-586
    • /
    • 2016
  • Post-translational modifications (PTMs) of proteins are essential to increase the functional diversity of the proteome. By adding chemical groups to proteins, or degrading entire proteins by phosphorylation, glycosylation, ubiquitination, neddylation, acetylation, lipidation, and proteolysis, the complexity of the proteome increases, and this then influences most biological processes. Although small RNAs are crucial regulatory elements for gene expression in most eukaryotes, PTMs of small RNA microprocessor and RNA silencing components have not been extensively investigated in plants. To date, several studies have shown that the proteolytic regulation of AGOs is important for host-pathogen interactions. DRB4 is regulated by the ubiquitin-proteasome system, and the degradation of HYL1 is modulated by a de-etiolation repressor, COP1, and an unknown cytoplasmic protease. Here, we discuss current findings on the PTMs of microprocessor and RNA silencing components in plants.

Overexpression of N -terminal lacking mutant HFR1 confers light-independence in a subset of photo-responses

  • Yang Ki-Young;Kim Young-Mi;Song Pill-Soon;Soh Moon-Soo
    • Proceedings of the Korean Society of Potoscience Conference
    • /
    • spring
    • /
    • pp.97-103
    • /
    • 2003
  • Phytochrome controls diverse aspects of plant development in response to the ambient light conditions. HFRl, a basic helix-loop-helix protein, is required for a subset of phytochrome A (phy A)-mediated photo-responses in Arabidopsis. Here, we show that overexpression of HFR1-N105, but not the one of the full-length HFR1, confers exaggerated photo-responses. The transgenic plants overexpressing HFR1- N105 exhibited light-independence in a subset of photo-responses, including germination, de-etiolation, gravitropic hypocotyl growth, and blocking of greening. Overexpression of HFR1-N105 also caused constitutive light-responses in the expression of some light-regulated genes. In addition, the HFR1-N105 overexpressor showed hypersensitive responses under R and FR light, dependently on phyB and phyA, respectively. End-of-day far-red light response and petiole elongation were suppressed in the HFR1-N105 overexpressor plants. Together these results imply that overexpression of HFR1-N105 activated a branch of light signaling, supporting the hypothesis that transcriptional regulation in the nucleus would be the primary mechanism of light signaling in Arabidopsis. We discuss the biotechnological potential of the mutant bHLH protein, HFR1-N105 in regard to suppressed shade avoidance syndrome.

  • PDF

Study on the Characteristics of Cultivation Period, Adaptive Genetic Resources, and Quantity for Cultivation of Rice in the Desert Environment of United Arab Emirates (United Arab Emirates 사막환경에서 벼 재배를 위한 재배기간, 유전자원 및 수량 특성 연구)

  • Jeong, Jae-Hyeok;Hwang, Woon-Ha;Lee, Hyeon-Seok;Yang, Seo-Yeong;Choi, Myoung-Goo;Kim, Jun-Hwan;Kim, Jae-Hyeon;Jung, Kang-Ho;Lee, Su-Hwan;Oh, Yang-Yeol;Lee, Kwang-Seung;Suh, Jung-Pil;Jung, Ki-Yuol;Lee, Jae-Su;Choi, In-Chan;Yu, Seung-hwa;Choi, Soon-Kun;Lee, Seul-Bi;Lee, Eun-Jin;Lee, Choung-Keun;Lee, Chung-Kuen
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.133-144
    • /
    • 2022
  • This study was conducted to investigate the cultivation period, adaptive genetic resources, growth and development patterns, and water consumption for rice cultivation in the desert environment of United Arab Emirates (UAE). R esearch on rice cultivation in the desert environment is expected to contribute to resolving food shortages caused by climate change and water scarcity. It was found that the optimal cultivation period of rice was from late November to late April of the following year during which the low temperature occurred at the vegetative growth stage of rice in the UAE. Asemi and FL478 were selected to be candidate cultivars for temperature and day-length conditions in the desert areas as a result of pre-testing genetic resources under reclaimed soil and artificial meteorological conditions. In the desert environment in the UAE, FL478 died before harvest due to the etiolation and poor growth in the early stage of growth. In contrast, Asemi overcame the etiolation in the early stage of growth, which allowed for harvest. The vegetative growth phases of Asemi were from early December to early March of the following year whereas its reproductive growth and ripening phases were from early March to late March and from late March to late April, respectively. The yield of milled rice for Asemi was 763kg/10a in the UAE, which was about 41.8% higher than that in Korea. Such an outcome was likely due to the abundant solar radiation during the reproductive growth and grain filling periods. On the other hand, water consumption during the cultivation period in the UAE was 2,619 ton/10a, which was about three times higher than that in Korea. These results suggest that irrigation technology and development of cultivation methods would be needed to minimize water consumption, which would make it economically viable to grow rice in the UAE. In addition, select on of genetic resources for the UAE desert environments such as minimum etiolation in the early stages of growth would be merited further studies, which would promote stable rice cultivation in the arid conditions.