• Title/Summary/Keyword: ethylene glycidyl methacrylate

Search Result 15, Processing Time 0.017 seconds

Synthesis of Poly(Styrene-co-GMA) and its Application as in situ Reactive Compatabilizer (Poly(Styrene-co-GMA)의 합성과 in situ Reactive Compatabilizer 로서의 응용)

  • Kim, Ju-Young;Suh, Kyung-Do
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.499-506
    • /
    • 1992
  • Copolymer of Styrene and GMA(glycidyl methachylate), having reactive ratios of $r_1=0.53$, $r_2=0.44$, was synthesized in dioxane using AIBN as free radical initiator. Followed by the reaction of ethylene diamine with copolymer PGS, amine groups were introduced to the PGS(NPGS). The composition of copolymer was determined by elemental analyzer. Poly(glycidyl methacrylate) (PGMA) was obtained in benzene using AIBN as free radical initiator. The NPGS-PGMA blend of 50/50 composition was prepared by mixing these polymers in THF at $65^{\circ}C$. Glass transition temperature (Tg) of NPGS-PGMA blend was measured by DSC. The blend showed a single Tg. Accordingly, it was clear that the NPGS was compatible with PGMA. An intermolecular reaction between amine groups of NPGS and epoxy groups of PGMA imparts compatibility in the NPGS-PGMA blend. When the NPGS-PGMA blend was added to the incompatible PS-PGMA blend, PS-PGMA blend showed Tg change. Scanning Electron Micrograph(SEM) showed a fine morphology in this blend. Consequently, it was apparent that the NPGS-PGMA blend acted as a compatibilizer for the PS-PGMA blend.

  • PDF

Mechanical and Morphological Properties of Poly(acrylonitrile-butadiene-styrene) and Poly(lactic acid) Blends (아크릴로니트릴-부타디엔-스티렌 공중합체와 폴리유산과의 블렌드에 대한 기계적 물성 및 모폴로지)

  • Lee, Yun Kyun;Kim, Ji Mun;Kim, Woo Nyon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.438-442
    • /
    • 2011
  • Mechanical and morphological properties of poly(acrylonitrile-butadiene-styrene) (ABS) and poly(lactic acid) (PLA) blends containing compatibilizers were investigated. Poly(styrene-acrylonitrile)-g-maleic anhydride) (SAN-g-MAH), poly(ethylene-co-octene) rubber-maleic anhydride (EOR-MAH) and poly(ethylene-co-glycidyl methacrylate) (EGMA) were used as compatibilizers. Mechanical properties such as tensile, flexural and impact strengths of ABS/PLA (80/20, wt%) blends were found to be increased when the SAN-g-MAH, EOR-MAH and EGMA were used. The maximum values for mechanical properties of the ABS/PLA (80/20) blend were observed when SAN-g-MAH was used as a compatibilizer at the concentration of 3 phr. From morphological studies of the ABS/PLA (80/20) blends, PLA droplet size was decreased by the addition of the compatibilizers used in this study. From the results of mechanical and morphological properties of the ABS/PLA (80/20) blends, SAN-g-MAH (3 phr) was found to be the most effective compatibilizer among the compatibilizers used in this study.

Reactive Compatibilization of Amorphous Poly-${\alpha}$-olefins/Amorphous Polyamide Blends (무정형 알파-올레핀 고분자/무정형 폴리아미드 블렌드의 반응 상용화)

  • Yun, Deok-Woo;Choi, Mi-Ju;Hwang, Kyu-Hee;Kim, Geon-Seok;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.490-495
    • /
    • 2009
  • The reactive compatibilization of amorphous poly-${\alpha}$-olefins (APAO)/amorphous polyamide (aPA) blends was carried out using two kinds of reactive compatibilizers such as maleated polypropylene and ethylene-glycidyl methacrylate-methyl acrylate copolymer. The grafting reaction rates between aPA and the compatibilizers were examined using FT-IR, SEM and rheometer. The effect of the reactive compatibilization on the mechanical property of the blends was investigated with a universal testing machine. The adhesion strength of the blends including a hydrocarbon tackifier resin, C9 was also measured.

Single-Protein Molecular Interactions on Polymer-Modified Glass Substrates for Nanoarray Chip Application Using Dual-Color TIRFM

  • Kim, Dae-Kwang;Lee, Hee-Gu;Jung, Hyung-Il;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.783-790
    • /
    • 2007
  • The immobilization of proteins and their molecular interactions on various polymer-modified glass substrates [i.e. 3-aminopropyltriethoxysilane (APTS), 3-glycidoxypropyltrimethoxysilane (GPTS), poly (ethylene glycol) diacrylate (PEG-DA), chitosan (CHI), glutaraldehyde (GA), 3-(trichlorosilyl)propyl methacrylate (TPM), 3'-mercaptopropyltrimethoxysilane (MPTMS), glycidyl methacrylate (GMA) and poly-l-lysine (PL).] for potential applications in a nanoarray protein chip at the single-molecule level was evaluated using prismtype dual-color total internal reflection fluorescence microscopy (dual-color TIRFM). A dual-color TIRF microscope, which contained two individual laser beams and a single high-sensitivity camera, was used for the rapid and simultaneous dual-color detection of the interactions and colocalization of different proteins labeled with different fluorescent dyes such as Alexa Fluor® 488, Qdot® 525 and Alexa Fluor® 633. Most of the polymer-modified glass substrates showed good stability and a relative high signal-to-noise (S/N) ratio over a 40-day period after making the substrates. The GPTS/CHI/GA-modified glass substrate showed a 13.5-56.3% higher relative S/N ratio than the other substrates. 1% Top-Block in 10 mM phosphate buffered saline (pH 7.4) showed a 99.2% increase in the blocking effect of non-specific adsorption. These results show that dual-color TIRFM is a powerful methodology for detecting proteins at the single-molecule level with potential applications in nanoarray chips or nano-biosensors.

Copolymerization of Ethylene and Cycloolefin with Metallocene Catalyst: II. Effect of Cycloolefin (메탈로센 촉매를 이용한 에틸렌과 시클로올레핀의 공중합: II. 시클로올레핀의 영향)

  • 이동호;정희경;최이영;김현준;김우식
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.751-756
    • /
    • 2000
  • The copolymerization of ethylene (E) and cycloolefin (CO) was carried out with rac-Et(Ind)$_2$ZrC $l_2$ and MMAO cocatalyst system to examine the effect of CO structure on catalytic behaviors and properties of copolymer (COC). Various cycloolefins such as norbornene (N), 5-phenyl-2-norbornene (PN) and 5-vinyl-2-norbornene (VN) were used as comonomers. With increasing [CO]/[E] feed ratio, the catalytic activity decreased while the glass transition temperature of copolymer increased. With analysis of the structure of E/VN copolymer by FT-IR and $^{l3}$C-NMR, it was found that the cyclic C=C bond of VN comonomer is selectively polymerized and the vinyl C=C bond remains unreacted. The resulting vinyl C=C bond attached into copolymer provided the functionalization moiety using glycidyl methacrylate.e.

  • PDF