• Title/Summary/Keyword: ethanol treatment

Search Result 1,726, Processing Time 0.027 seconds

Regulatory Effects of Chrysanthemi Zawadskii Herba on NO Production and Vascular Adhesion Molecule Expression (구절초(Chrysanthemi Zawadskii Herba)의 항염증 인자 생성 및 혈관부착인자 발현 억제 효과)

  • Sohn, E.S.;Kim, S.H.;Ha, C.W.;Jang, S.;Sohn, E.H.;Chae, C.J.;Koo, H.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.1
    • /
    • pp.14-22
    • /
    • 2022
  • The purpose of this study is to provide evidence for discovering functional materials through the anti-inflammatory efficacy screening of randomly selected medicinal herbs. We prepared 70% ethanol extracts from 10 herbs and evaluated for the inhibitory effect of NO production on LPS-stimulated mouse macrophage cell line Raw 264.7. As a result, it was confirmed that the Chrysanthemi Zawadskii Herba (CZ) extract had the highest effect of inhibiting NO production induced by LPS. We therefore measured and compared NO inhibitory effects at different concentrations (10, 50, 250 ㎍/mL) of 70% ethanol and water extract of CZ. It was observed that both ethanol and water treatment groups inhibited NO production in a concentration-dependent manner in both ethanol and water treatment groups. In particular, it was confirmed that the CZ 70% ethanol extract (99.97%) had a higher NO inhibitory effect than the water extract (93.32%) in the high concentration (250 ㎍/mL) treatment group. There was no effect of CZ extract on cell viability at all concentrations used in the experiment. Moreover, it was shown that CZ ethanol extract remarkably inhibited the expression of VCAM-1 induced by TNF-𝛼, and it was slightly decreased even by treatment with water extract. This study suggests that Chrysanthemi Zawadskii Herba has potential as a functional substance that regulates vascular inflammation.

Effect of Different Rates of Ethanol Additive on Fermentation Quality of Napiergrass (Pennisetum purpureum)

  • Zhang, Lei;Yu, C.Q.;Shimojo, M.;Shao, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.636-642
    • /
    • 2011
  • The effect of different rates of ethanol additive on fermentation quality of napiergrass (Pennisetum purpureum) and residual water soluble carbohydrate were studied in the experiment. The addition rate of ethanol was 0%, 1.5%, 2.5%, 3.5%, 4.5% on fresh weight of napiergrass. The laboratory silos were kept in the room, then were opened on 1, 3, 5, 7, 14, 30 days after ensiling and the changes of silage quality were analyzed, respectively. There was a fast and large reduction in pH from the 5th day of ensiling to below 4.2 except for the 4.5% treatment. After five days the pH of silage decreased slowly and the pH of the ethanol additions was lower than the control. Lactic acid content of ethanol treatments increased significantly (p<0.05) from the 5th day of ensiling, reaching the highest value on either the 7th day or 14th day. The ethanol additive inhibited the break down of silage protein and the ammonia nitrogen content of ethanol addition silage was significantly (p<0.05) lower than the control after 30 days of ensiling. Within the initial first day of ensiling the water soluble carbohydrate content declined quickly. The efficiency of water soluble carbohydrate usage was higher in silage with ethanol than in the control. The acetic acid of ethanol treatment was significantly (p<0.05) lower than control on first and 14th day, but there was no significant (p>0.05) difference among the ethanol addition silages. The volatile fatty acids content of silage increased gradually from the first day of ensiling and reached the peak on 14th day or 30th day and the content of ethanol addition treatment was significantly (p<0.05) lower than the control. The experimental results indicated that adding ethanol inhibited the use of protein and water soluble carbohydrate of aerobic bacteria and reduced the silage losses during the early stage of ensiling and thus supplied more fermentation substrate for lactic acid bacteria and improved the fermentation quality of napiergrass.

Effect of the Addition of Antimicrobial Materials Before and After Aging on the Physicochemical Properties of Low-Salt Kochujang during Storage

  • Seo, Young-Eun;Bae, Hwa-Sook;Kim, Dong-Han
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.4
    • /
    • pp.287-294
    • /
    • 2014
  • To improve the shelf life of low-salt Kochujang, Korean hot pepper paste, antimicrobial materials were added at different times before and after aging. The kochujang was then packaged and stored at $30^{\circ}C$ for 15 weeks, and changes in microbiological and physiochemical properties were evaluated. Hunter a- and b-values decreased considerably during storage. The total color difference (${\delta}E$) was greater in the ethanol-chitosan (EC) treatment than in the control and after pasteurization (A-P) treatment. Gas was produced until the seventh week of storage. The control and the A-P treatments produced more gas than the other treatments, and these had the largest number of yeasts and aerobic bacteria. The pH of the EC treatment was higher than that of the other treatments, and the A-P treatment had the highest level of titratable acidity. During storage, the oxidation-reduction potential was lower in the EC and ethanol-mustard-chitosan (EMC) treatments. The reducing sugar content decreased remarkably in the control and A-P treatments, with high production of ethanol. There was a significant change in the content of amino-type nitrogen in the control and A-P treatments, and the content of ammonia-type nitrogen was lowest in the EMC treatment. In the sensory test of kochujang, the ethanol-mustard (EM) and ethanol (E) treatments were significantly higher than the EC, control, and A-P treatments (p <0.05). EM or E alone was effective in extending the shelf life of kochujang when added before aging.

Decreased Induction of Alcoholic Fatty Liver by YH430 in Rats (YH439의 알콜성 지방간생성 억제작용)

  • 강경애;김영철
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.267-271
    • /
    • 1995
  • A single large dose of ethanol as well as chronic ethanol consumption produces alcoholic fatty liver in human and experimental animals. We examined the effects of YH439, a potential hepatoprotective agent, on alcoholic fatty liver generation in adult female rats. In rats treated with YH439 (250 mg/kg, po) 4 hr prior to a single dose of ethanol (6 g/kg, po), a significant decrease in hepatic triglyceride accumulation was observed. YH439 also has an inhibitory effect on hepatic triglyceride and cholesterol accumulation induced by repeated ethanol treatments for one week. Because it has been known that induction of alcoholic fatty liver is associated with lipid peroxidation and/or hepatic glutathione depression, the effect of YH439 on these parameters was determined in the livers of rats treated with ethanol. Coadministration with YH439 inhibited MDA formation and gIutathione depression induced by acute or repeated ethanol administration. In order to determine the effect of YH439 on ethanol metabolism in vivo, disappearance of ethanol from blood was measured. In rats treated with a single dose of ethanol (6 g/kg, po), the ethanol concentration in blood reached a peak approximately 120 min following the treatment which declined linearly for 18 hrs. YH439 had no effect on the decline of blood ethanol concentration regardless of the dose of ethanol given to rats. These results in this study suggest that YH439 has an inhibitory effect on fatty liver generation induced by acute or repeated ethanol consumption through a mechanism not directly related to the rate of ethanol metabolism in vivo.

  • PDF

Production of Bio-ethanol from Brown Algae by Physicochemical Hydrolysis (물리화학적 가수분해에 의한 갈조류 바이오 에탄올 생산)

  • Lee, Sung-Mok;Kim, Jae-Hyeok;Cho, Hwa-Young;Joo, Hyun;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.517-521
    • /
    • 2009
  • In this study, the productivity of bio-ethanol obtained from various brown-algae raw materials was examined. Brown-algae polysaccharide, consisting of alginate and laminaran, is usable for the effective production of bio-ethanol if it is hydrolyzed to monomer unit. The objective of this study is the production of bio-ethanol from brown-algae using a heat-treatment and acid-treatment. Bio-ethanol was produced by Saccharomyces cerevisiae KCCM1129 and Pachysolen tannophilus KCTC 7937 strains. Laminaran japonica was higher than Sagassum fulvellum and Hizikia fusiformis, Laminaran japonica optimum pre-treatment is used to derive the ethanol production of Saccharomyces cerevisiae KCCM1129 and Pachysolen tannophilus KCTC 7937 respectively 9.16 g/L, 9.80 g/L. The maximum output of Sargassum fulvellum and Hizikia fusiformis was very low as 0.22 g/L.

Enhancing anti-calcification efficacy in veterinary cardiovascular surgeries: evaluating short-term ethanol's role in glutaraldehyde fixed pericardial tissues in rats

  • Kyung-Min Kim;Won-Jong Lee;Woo-Jin Kim;Chang-Hwan Moon;Jaemin Jeong;Hae-Beom Lee;Seong-Mok Jeong;Dae-Hyun Kim
    • Korean Journal of Veterinary Research
    • /
    • v.64 no.2
    • /
    • pp.16.1-16.9
    • /
    • 2024
  • Autologous pericardial tissues are utilized in veterinary cardiovascular surgeries due to their accessibility and effectiveness. To enhance handling and biomechanical properties, glutaraldehyde (GA) fixation is applied. However, GA fixation can induce calcification, leading to tissue failure. This study aimed to establish an optimal rapid anti-calcification protocol by integrating ethanol treatment with the proven effective GA concentration and fixation time, facilitating application from collection to utilization. Pericardia were fixed with 0.625% GA for 20 min and subjected to ethanol treatment for 0 (group A, control), 20 (group B), and 30 minutes (group C). The treated tissues underwent mechanical test and were implanted subcutaneously in 3-week-old male rats for 7 weeks before extraction, followed by calcium analysis and histological examination via hematoxylin and eosin staining. No significant differences in mechanical properties were observed among the groups. The ethanol-treated groups (groups B and C; p < 0.05) exhibited significantly lower calcium levels than control (group A). Microscopy confirmed collagen and elastic fibers preservation, without significant immune cell variance. However, higher fibrocyte presence was noted in the ethanol-treated groups. This study presents a rapid anti-calcification protocol combining ethanol treatment with optimal GA fixation, suitable for direct surgical use of autologous tissues. Further research is necessary for long-term efficacy evaluation.

Studies on Protective Effect of DA-9601\ulcorner an Artimisiae Herba Extract, against Ethanol-induced Gastric Mucosal Damage and its Mechanism (에탄올-유발 위점막손상에 대한 애엽추출물 (DA-9601)의 방어효과 및 기전에 관한 연구)

  • 오태영;안병옥;고준일;류병권;손미원;김순희;김원배;이은방
    • Biomolecules & Therapeutics
    • /
    • v.5 no.2
    • /
    • pp.202-210
    • /
    • 1997
  • Protective effect of DA-9601, an extract of Artemisia Herb, against ethanol-induced gastric mucosal injury was evaluated in rats. In the prophylactic study, DA-9601 exhibited total protection (99.4%) against absolute ethanol-induced gastropathy, And the protective effect of DA-9601 lasted up to 2 hours, which was longer than those of other contemporary mucoprotectants. In the treatment study, DA-9601 significantly facilitated the healing of 70% ethanol-induced mucosal damage, which was superior to cetraxate, a commonly used anti-ulcer drug. The mechanisms of mucoprotection of DA-9601 were also assessed. DA-9601 increased the release of prostaglandin E$_2$ from murine neutrophils in a dose-dependent manner in vitro. The cytoprotective effect of DA-9601 against ethanol-induced mucosal damage was significantly diminished by the concommitant injection of N$\omega$-nitro-L-arginine methyl ester (L-NAME, 5 mg/kg, i.v.), a non-specific nitric oxide (NO) synthase inhibitor, while it was not affected by preinjection of indomethacin (5 mg/kg, s.c.), a prostaglandins-depletor. And it was found that DA-9601 significantly enhanced adaptive cytoprotective action of 10% ethanol against absolute ethanol (56.9$\pm$6.5 vs 23.0$\pm$3.3 mm$^2$, p<0.05, mean$\pm$SEM), though its exact underlying mechanism remains to be clarified. The present fin[lings demonstrate that DA-9601 exerts gastroprotecticv actions for the stomach against ethanol through several different underlying mechanisms, in which prostanglandins and NO are involved. In conclusion, the results obtained suggest that DA-9601 can be useful both in prevention and treatment of ethanol-induced gastric damage.

  • PDF

Palmul-tang, a Traditional Herbal Formula, Protects against Ethanol-induced Acute Gastric Injury in Rats

  • Shin, In-Sik;Lee, Mee-Young;Seo, Chang-Seob;Lim, Hye-Sun;Kim, Jung-Hoon;Jeon, Woo-Young;Shin, Hyeun-Kyoo
    • The Journal of Korean Medicine
    • /
    • v.32 no.6
    • /
    • pp.74-84
    • /
    • 2011
  • Objectives: Palmul-tang (hachimotsu-to in Japanese and bawu-tang in Chinese) is a mixture of eight herbs. It is traditionally used for the treatment of anemia, anorexia, general weakness, and female infertility in China, Japan, and Korea. In this study, we investigated the protective effects of Palmul-tang water extract (PTE) against ethanol-induced acute gastric injury in rats. Material and Methods: Acute gastric lesions were induced by intragastric administration of 5mL/kg body weight of absolute ethanol to each rat. Control group rats were given PBS orally and the ethanol group (EtOH group) received absolute ethanol (5mL/kg) by oral gavage. The positive control group and the PTE group were given oral doses of omeprazole (50mg/kg) or PTE (400mg/kg), respectively, 2 h prior to the administration of absolute ethanol. The stomach of each animal was excised and examined for gastric mucosal lesions. To confirm the protective effects of PTE, we evaluated the degree of lipid peroxidation, the level of reduced glutathione (GSH), and the activities of the antioxidant enzymes catalase, glutathione-S-transferase, glutathione peroxidase, and glutathione reductase in the stomach. Results: PTE reduced ethanol-induced hemorrhage and hyperemia in the gastric mucosa. PTE reduced the increase in lipid peroxidation associated with ethanol-induced acute gastric lesions and increased mucosal GSH content and the activities of antioxidant enzymes. Conclusion: These results indicate that PTE protects gastric mucosa against ethanol-induced acute gastric injury by increasing antioxidant status. We suggest that PTE could be developed as an effective drug for the treatment of acute gastric injury.

Mechanism of Ethanol-induced Purkinje Cell Death in Developing Rat Cerebellum: Its Implication in Apoptosis and Oxidative Damage

  • Song, Ji-Hoon;Kang, Ji-Hoon;Kang, Hee-Kyung;Kim, Kwang-Sik;Lee, Sung-Ho;Choi, Don-Chan;Cheon, Min-Seok;Park, Deok-Bae;Lee, Young-Ki
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.205-213
    • /
    • 2011
  • Ethanol treatment during the brain growth spurt period has been known to induce the death of Purkinje cells. The underlying molecular mechanisms and the role of reactive oxygen species (ROS) in triggering ethanol-induced Purkinje cell death are, however, largely unresolved. We undertook TUNEL staining, western blotting assay and immunohistochemistry for the cleaved forms of caspase-3 and -9, with calbindin D28K double immunostaining to identify apoptotic Purkinje cells. The possibility of ROS-induced Purkinje cell death was immunohistochemically determined by using anti-8-hydroxy-2'deoxyguanosine (8-OHdG), a specific cellular marker for oxidative damage. The results show that Purkinje cell death of PD 5 rat cerebellum following ethanol administration is mediated by the activation of caspase-3 and -9. However, unexpectedly, TUNEL staining did not reveal any positive Purkinje cells while there were some TUNEL-positive cells in the internal and external granular layer. 8-OHdG was detected in the Purkinje cell layers at 8 h, peaked at 12-24 h, but not at 30 h post-ethanol treatment. No 8-0HdG immunoreactive cells were detected in the internal and external granular layer. The lobule specific 8-OHdG staining patterns following ethanol exposure are consistent with that of ethanol-induced Purkinje cell loss. Thus, we suggest that ethanol-induced Purkinje cell death may not occur by the classical apoptotic pathway and oxidative damage is involved in ethanol-induced Purkinje cell death in the developing cerebellum.

The Protective Effect of Quercetin-3-O-${\beta}$-D-Glucuronopyranoside on Ethanol-induced Damage in Cultured Feline Esophageal Epithelial Cells

  • Cho, Jung-Hyun;Park, Sun-Young;Lee, Ho-Sung;Whang, Wan-Kyunn;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.319-326
    • /
    • 2011
  • Quercetin-3-O-${\beta}$-D-glucuronopyranoside (QGC) is a flavonoid glucoside extracted from Rumex Aquaticus Herba. We aimed to explore its protective effect against ethanol-induced cell damage and the mechanism involved in the effect in feline esophageal epithelial cells (EEC). Cell viability was tested and 2',7'-dichlorofluorescin diacetate assay was used to detect intracellular $H_2O_2$ production. Western blotting analysis was performed to investigate MAPK activation and interleukin 6 (IL-6) expression. Exposure of cells to 10% ethanol time-dependently decreased cell viability. Notably, exposure to ethanol for 30 min decreased cell viability to 43.4%. When cells were incubated with $50{\mu}M$ QGC for 12 h prior to and during ethanol treatment, cell viability was increased to 65%. QGC also inhibited the $H_2O_2$ production and activation of ERK 1/2 induced by ethanol. Pretreatment of cells with the NADPH oxidase inhibitor, diphenylene iodonium, also inhibited the ethanol-induced ERK 1/2 activation. Treatment of cells with ethanol for 30 or 60 min in the absence or presence of QGC exhibited no changes in the IL-6 expression or release compared to control. Taken together, the data indicate that the cytoprotective effect of QGC against ethanol-induced cell damage may involve inhibition of ROS generation and downstream activation of the ERK 1/2 in feline EEC.