• Title/Summary/Keyword: ethanol inhibition

Search Result 1,353, Processing Time 0.021 seconds

Effects of Ethanol on Na-K-ATPase Activity of Cat Kidney (Ethanol 이 고양이 신장 Na-K-ATPase 활성에 미치는 영향)

  • Kim, Joo-Heon;Kim, Yong-Keun
    • Korean Journal of Veterinary Research
    • /
    • v.23 no.1
    • /
    • pp.9-16
    • /
    • 1983
  • The effects of ethanol on Na-K-ATPase activity were investigated with cat kidney homogenate. The results were summarized as follows: 1. Na-K-ATPase activity was inhibited with dose-dependent manner by ethanol of higher concentration than 1%, and showed an estimated $I_{50}$ (the inhibitor concentration to cause 50% inhibition) of 7.5%. 2. Hydrolysis of ATP was linear with the incubation time in the absence and presence of 8% ethanol, whereas it was different with preincubation time in the presence of 15% ethanol. 3. Inhibition of Na-K-ATPase activity by ethanol was not affected by increased enzyme concentration, and showed the reversibility of the inhibitory pattern. 4. Kinetic studies of cationic-substrate activation of Na-K-ATPase showed that ethanol had both properties of classical competitive inhibition for $Mg^{{+}{+}}$ or $K^+ and non-competitive inhibition for ATP or $Na^+$. 5. Arrhenius plot yield two break point at $21^{\circ}$ and $30^{\circ}C$ in the absence of ethanol, whereas showing only one break point at $18^{\circ}C$ in the presence of 8% ethanol. These results suggested that ethanol inhibited Na-K-ATPase activity reversible through a disturbance of microenvironment of lipids associated with the enzyme.

  • PDF

Antioxidant, angiotensinconverting enzyme and xanthin oxidase inhibitory activity of extracts from Saururus chinensis leaves by ultrafine grinding (초미세 분쇄한 삼백초(Saururus chinensis) 추출물의 항산화, angiotensinconverting enzyme 및 xanthin oxidase 억제 활성)

  • Cho, Young-Je
    • Food Science and Preservation
    • /
    • v.21 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • In this study, the biological activity of water and ethanol extracts from Saururus chinensis by ultra-fine grinding for functional food source are examined. It is more effective to use ethanol than water when extracting phenolic compounds. Approximately 2.5 times higher extraction yield were shown when it was ultra-fine grinded because the particle size decreases, thereby increasing the extraction yield. Normal grinded sample extracts showed 69.8% of DPPH inhibition effect, while fine grinded and ultra-fine grinded sample extracts showed 70.7% and 83.8% each, respectively. Normal extract, as well as fine grinded and ultra-fine grinded extracts, showed over 97% of ABTS inhibition effect, thereby indicating only a slight difference in the anti-oxidative activity with the grinding method. Higher PF was determined with fine grinded and ultra-fine grinded extracts than the normal grinded extract, while ultra-fine grinded 50% ethanol extracts showed the highest anti-oxidative activity value of 1.8 PF. The fine grinded and ultra-fine grinded particle sizes are smaller than the normal grinded particle size, thus increasing the inhibition rate of the TBARS. Furthermore, the ethanol extract was revealed to have a higher effect than the water extracts. The xanthin oxidase inhibition, on the other hand, was identified as ultra-fine grinded that led to the increase in the enzyme inhibition effect. In the angiotensin-converting enzyme, water extracts with normal grinding did not show inhibition activity, while 50% ethanol extracts showed 24% inhibition activity. Moreover, the ethanol extracts showed higher inhibition effect compared to the water extracts. Ultra-fine grinded 50% ethanol extracts showed a slight antibacterial effect on the Staphylococcus aureus and Escherichia coli, while the other extracts showed none. The result suggests that Saururus chinensis extracts by ultra-fine grinding may be more useful than normal grinding as potential sources due to anti-oxidation, angiotensin converting enzyme and xanthine oxidase inhibition.

Inhibition of Ethanol Absorption by Rhodiola sachalinensis in Rats

  • Kim, Moon-Hee;Park, Chan-Koo
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.432-437
    • /
    • 1997
  • We used a herbal medicine, roots of Rhodiola sachalinensis (RS) to assess whether RS extract can decrease blood ethanol concentrations in rats fed ethanol and if so, to elucidate the mechanism by which RS extract reduces blood ethanol levels. Rats were fed ethanol orally 1 hr after the oral administration of various doses of RS extract. In another experiment, rats were injected intraperitoneally with ethanol following the intake of RS extract via gastric catheter to eliminate possible inhibition of ethanol absorption in the gastrointestine by RS extract. The administration of RS extract remarkably lowered blood ethanol levels in a dose-dependent manner in rats given ethanol orally. However, the intake of RS extract did not reduce ethanol levels in rats injected with ethanol intraperitoneally. The activities of two main hepatic enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), involved in ethanol metabolism, were not affected by the administration of RS extract in rats fed ethanol. In addition, the intake of RS extract reduced serum triglyceride levels elevated by ethanol to the normal level. We conclude that the administration of RS extract lowers blood ethanol concentrations by inhibition of ethanol absorption in the gastrointestinal tracts of ethanol-fed animals.

  • PDF

Investigated of Mathematical Model for the Specific Growth Rate of Ethanol Producing Microorganism, Saccharomyces cerevisiae ATCC 24858 (에탄올 생산 균주 Saccharomyces cerevisiae ATCC 248858의 비성장속도에 관한 수학적 모형연구)

  • 김휘동;허병기
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.730-734
    • /
    • 1998
  • The mathematical model of specific growth rate of Saccharomyces cerevisiae ATCC 24858 is proposed as a function of sugar and ethanol concentrations by the combination of Andrew's equation and Aiba's equation. The maximum concentration of sugar Sm, which was the highest concentration of sugar not having any effect on the growth inhibition, was 150 g/L and the substrate inhibition was expressed as a function of (S-Sm). The maximum specific growth inhibition, was 150 g/L and the substrate inhibition was expressed as a function of (S-Sm). The maximum specific growth rate ${\mu}m$, Monod's constant Ks, and Andrew's inhibition constant KI were 0.49 hr-1, 19 g/L, and 139 g/L, respectively. The maximum ethanol concentration, Pm, which did not show any inhibition effect on the specific growth rate was found to be 2 g/L. Therefore, the ethanol inhibition was represented as a function of (P-Pm). The final mathematical model for the specific growth rate of the microorganism in this work is proposed as the following. And the average percent of errors between the calculated specific growth rate and the experimental values was 5.96%.

  • PDF

Biological Activity of Extracts from Chrysanthemum incidicum Linne by Ultrafine Grinding (미세분쇄에 의한 감국(Chrysanthemum incidicum Linne) 추출물의 생리활성)

  • Cho, Young-Je
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.110-117
    • /
    • 2014
  • In this study, the biological activity of water and ethanol extracts from Chrysanthemum incidicum Linne by ultrafine grinding for functional food source are examined. The content of phenolic compounds from Chrysanthemum incidicum Linne were the highest when extracted for 6 hr with 70% ethanol. The extraction yield of water and ethanol extracts were $7.12{\pm}1.61$ mg/g and $7.51{\pm}2.14$ mg/g, respectively. With ultrafine grinding, water and ethanol extracts were $8.63{\pm}1.15$ mg/g and $9.33{\pm}1.35$ mg/g, respectively. In determining anti-oxidative activity of Chrysanthemum incidicum Linne extracts, DPPH of normal grinding extracts was 83.52% and ultrafine grinding was 92.37%. In ABTS radical cation decolorization, normal grinding, fine grinding, and ultrafine grinding extracts were 90% or higher. In antioxidant protection factor (PF), water and ethanol extracts of ultrafine grinding showed relatively high anti-oxidative activities of each 1.82 PF and 2.16 PF, respectively. The TBARS value of ultrafine grinding extracts were lower than normal grinding and fine grinding extracts. The inhibition activity on xanthin oxidase of Chrysanthemum incidicum Linne extracts was 67.53% in ultrafine grinded water extracts and 83.45% in ultrafine grinded ethanol extracts. Inhibition on xanthin oxidase of ethanol extracts showed a higher inhibition effect than water extracts, and ultrafine grinding was higher than normal grinding. In angiotensin converting enzyme inhibition activity, ultrafine grinding water extract was 24% or higher, and ethanol extract was 34% or higher. The elastase inhibition activity of ultrafine grinding extract was 25.56%, which was higher than 20.34% of fine grinding extracts. Water extracts did not show hyaluronidase inhibition activity but ethanol extracts showed 35% of hyaluronidase inhibition activity. The determining expression inhibition of iNOS and COX-2 protein in macrophage by Chrysanthemum incidicum Linne extracts with a Western blot analysis, iNOS and COX-2 protein expression inhibition by Chrysanthemum incidicum Linne ethanol extracts were 40% and 15%, respectively at 100 ${\mu}g/mL$ concentration. The inhibitory patterns of iNOS and COX-2 protein expression was concentration dependent. The result suggests that Chrysanthemum incidicum Linne extracts by ultrafine grinding may be more useful than normal grinding as potential sources due to anti-oxidation, angiotensin converting enzyme and xanthine oxidase inhibition, anti-inflammation effect.

Screening Biological Activities of Grape Seed and Skin Extracts of Campbell Early (Vitis labruscana B.)

  • Park, Sung-Jin;Lee, Hyeon-Yong;Park, Boo-Kil;Oh, Deog-Hwan
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.3
    • /
    • pp.231-237
    • /
    • 2002
  • This study was conducted to determine biological activities, such as lipid peroxidation inhibition, cytotoxicity, sun blocker, inhibition of tyrosinase, and antioxidative effect, of ethanol extracts, and of solvent fractionated ethanol extracts obtained from grape seeds and skins. The strongest lipid oxidative inhibition of 66.9% and 67.6% was observed respectively, in the presence of 20 $\mu\textrm{g}$/$m\ell$ of both ethanol extract and water fraction of grape seeds. Overall, the ethanol extracts and their fractions of grape seeds exhibited stronger lipid oxidative inhibition than that of skin extracts. On the other hand, the ethanol extracts of grape skins showed stronger cytotoxicity than that of seeds on MCF-7, Hep3B, and A549 cancer cell lines. However, the water fraction of seed ethanol extracts showed the strongest cytotoxic effect of 76.52% and 67.01% on MCF-7 and Hep3B, respectively among their fractions. Ethanol seed extracts obtained at 3$0^{\circ}C$ had the strongest absorbance both at UVA region (350 nm) and UVB region (308 nm) and the chloroform fraction showed the strongest absorbance at W region and butanol fraction at UVA region among their tractions, respectively. In the meantime, the ethanol extracts obtained at 3$0^{\circ}C$ and butanol fraction showed the strongest tyrosinase inhibitory effect of 39.4% and 37.6%, respectively. This study shows that ethanol extracts and their fractions of grape seeds and skins could be potential good materials for functional food and cosmetic products.

Inhibitory Effect of Ethanol Extract and Juice of the Korean Cherry (Prunus tomentosa Thunberg) on Tyrosinase Activity In vitro (앵두과즙과 Ethanol 추출액의 In vitro에서 Tyrosinase 활성 저해효과)

  • Hwang, Ho-Sun;Kim, Joong-Man;Song, Young-Ae;Jeon, Ye-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.760-763
    • /
    • 2001
  • To develop a functional beverage from Korean cherry (Prunus tomentosa Thunberg), inhibition effect of ethanol extract and juice of the korean cherry on melanin systhesis and tyrosinase activity in vitro was investigated. Inhibition ratio of tyrosinase activity increased as the concentration of solid of korean cherry juice increased, and inhibition affect was high in initiation step of enzyme reaction and then gradually decreased. Inhibition ratio of tyrosinase activity was high in the 70% (v/v) ethanol extract of the cherry and the highest in the ethyl acetate fraction of the 70% (v/v) ethanol extract. Ultimatly, the amounts of functional matter (melanin synthesis inhibitor) in the cherry was highest in ethyl acetate fraction of the ethanol extract.

  • PDF

Cytotoxicity of Ligularia fischeri Extracts (곰취 추출물의 세포독성 효과)

  • 함승시;이상영;오덕환;정성원;김상헌;정차권;강일준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.987-992
    • /
    • 1998
  • This study was investigated to observe the cytotoxicity effect of Ligularia fischeri extracts against cancer cell lines including human lung carcinoma(A549), human cervix epitheloid carcinoma(HeLa) and human hepatocellular carcinoma(HepG2) using SRB(sulforhodamine B) method. The ethanol and methanol extracts of 1$\mu\textrm{g}$/${mu}ell$ showed approximately 79.2% and 86.4% cytotoxicity effects on HepG2 cell line and the ethyl acetate fracton fractionated from ethanol extracts showed the strongest cytotoxicity effect with 94% inhibition. The inhibitory effect of ethanol extract on HeLa cell line was somewhat low with 50~56% inhibition, but ethyl acetate fraction showed higher cytotoxicity effect with 91% and 91.9% inhibition on the HeLa and A549 cell line. On the contrary, the ethanol and methanol extracts showed the lower inhibition effects on the normal liver cell, WRL68, compared to human cancer cell lines.

  • PDF

Larval migration inhibition activity of ivermectin, doramectin and ethanol against Anisakis simplex in vitro (시험관내에서 이버멕틴, 도라멕틴, 에타놀에 대한 아나사키스 유충의 운동성 억제효과)

  • Jeon, Jae-Hyung;Jee, Cha-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.2
    • /
    • pp.197-202
    • /
    • 2007
  • This experiment has been investigated in order to examine larval migration inhibition activity of ivermectin, doramectin and ethanol against Anisakis simplex (A. simplex) in vitro. A. simplex larvae were obtained from the mackerel acquired from the fish market of Cheongju. They were divided into many groups and placed in culture dishes (40 larvae each) containing RPMI-1640, in the absence or presence of different concentrations of ivermectin, doramectin and ethanol. Ivermectin had a complete inhibition of larval migration at 72 h in all groups ($10-300{\mu}g/ml$). Ethanol reduced the migration of the larvae, its maximum activity being an high doses (7.5%, 10% ethanol) when it was 100% efficacy at 4 h. Doramectin had no efficacy in vitro. Being needed that further studies with ivermectin and doramectin, it is recommended that in vivo test with laboratory animals should be carried.

Hypoglycemic and Angiotension Converting Enzyme Inhibitory Effect of Water and Ethanol Extracts from Haesongi Mushroom (Hypsizigus marmoreus)

  • Jung, Eun-Bong;Jo, Jin-Ho;Cho, Seung-Mock
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.541-545
    • /
    • 2009
  • Water and ethanol extracts were prepared from the haesongi mushroom (Hypsizigus marmoreus) to measure functional components. The ability of the extracts to inhibit angiotensin-converting enzyme (ACE) and their hypoglycemic effects were also determined; the latter was measured by $\alpha$-amylase and glucosidase inhibition. Extraction yield, protein content, total phenol, and $\beta$-glucan in the water extracts were 55.86, 17.71, 1.89, and 21.93%, respectively. The respective values for the ethanol extracts were lower than those for water extracts. Both water and ethanol extracts showed dosedependent ACE inhibition, the effect of the former being greater. The water extract inhibited ACE activity by 95.34% at 40 mg/mL. The $IC_{50}$ values of the water extracts were 63.32 and 0.41 mg/mL for $\alpha$-amylase and glucosidase, respectively. Thus, the water extracts had a greater hypoglycemic effect than the ethanol extracts. From these results, water is a better solvent than ethanol to extract from the haesongi mushroom functional components that show ACE inhibition and have hypoglycemic effects.