• Title/Summary/Keyword: etching speed

Search Result 163, Processing Time 0.02 seconds

TENSILE STRENGTHS OF PRE-LIGATURED BUTTON WITH SEVERAL TYPES OF CONTAMINATION IN DIRECT BONDING PROCEDURE WHICH CAN HAPPEN DURING THE SURGICAL EXPOSURE OF UNERUPTED TEETH (치아의 견인을 위한 버튼 접착시 오염이 인장강동에 미치는 영향)

  • Kim, Seong-Oh;Choi, Byung-Jai;Lee, Jae-Ho;Sohn, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.400-420
    • /
    • 1998
  • We already know that it is very difficult to obtain an "isolated field" for direct bonding during the surgical exposure of unerupted teeth. The aim of this in-vitro study is to simulate the clinical situation of forced eruption and to evaluate the tensile strengths of preligatured button with several types of contamination which can happen during the surgical exposure of unerupted teeth. Four orthodontic direct bonding systems were used. ($Ortho-One^{TM}$, $Rely-a-Bond^{(R)}$, $Ortho-Two^{TM}$, Phase $II^{(R)}$) Each material was divided into four groups(n=20) : Group 1. (Control, no contamination), Group 2. (Rinse etching agent with saline instead of water), Group 3. (Blood contamination of etched surface for 30 seconds), Group 4. (Blood contamination of primed surface for 30 seconds) 320 bovine anterior permanent teeth were divided into the above mentioned 16 groups. Enamel surface was flattened and ground under water coolant. Pre-ligatured buttons were prepared to the same form. (Cut 0.25 ligature wire 10 cm in length. Twist the ligature wire 30 times clockwise. Mark the wire 15mm and 35mm points from button. Make a loop sticking two points together and twist the loop 6 times counterclockwise.) The bonded specimens were stored at $37^{\circ}C$ saline solution for 3 days. Then the tensile strength of each sample was measured with Instron universal testing machine, crosshead speed of 0.5mm/min. The following results were obtained: 1. As compared to control groups (Group 1) of each material, Rely-a-Bond had a significantly lower mean tensile strengths than other material. (p<0.01) 2. In Group 2. of Ortho-One and Rely-a-Bond, the mean tensile strengths decreased about 7.7% and 11.1%, respectively with statistical significances. (p<0.05) 3. In Group 2. of Ortho-Two and Phase II, the mean tensile strengths did not decrease. 4. In Group 3. of Ortho-One, Rely-a-Bond, Ortho-Two, and Phase II, the mean tensile strengths decreased about 60.8%, 56.1%, 60.2%, and 46.0%, respectively with statistical significances. (p<0.01) 5. In Group 4. of Ortho-One and Rely-a-Bond, the mean tensile strengths did not decrease. 6. In Group 4. of Ortho-Two and Phase II, the mean tensile strengths were decreased about 20.95% and 22.28%, respectively with statistical significances. (p<0.01) There were formations of a hump shaped mass from bonding resin under blood contamination which disturbed direct bonding procedure. According to Reynolds, the proper bond strength for clinical manipulation should be at least 45N or about 4.5Kg.F. According to these results, it can be concluded that Ortho-One could be used during surgical exposure of unerupted teeth. In any case, blood contamination of the etched surface should be avoided, but the blood contamination of primed surface of Ortho-One may not decrease bond strength. Just 'blowing-out' is enough to remove blood from primed surface of Ortho-One. You can verify the clean surface of the primer of Ortho-One after blowing out the blood contamination.

  • PDF

The effect of using laser for ceramic bracket bonding of porcelain surfaces (세라믹 브라켓 부착 시 레이저를 이용한 포세린 표면처리 효과)

  • An, Kyung-Mi;Sohn, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.38 no.4
    • /
    • pp.275-282
    • /
    • 2008
  • Objective: The purpose of this study was to investigate the effect of using laser for ceramic bracket bonding of porcelain surfaces and to compare it with conventional treatment of porcelain surfaces. Methods: Ninety feldspathic porcelain specimens were divided into 9 groups of 10, with each group having different surface treatments performed. Surface treatment groups were orthophosphoric acid, orthophosphoric acid with silane, hydrofluoric acid, hydrofluoric acid with silane, sandblasted, sandblasted with silane, laser etched, laser etched with silane, and glazed surface served as a control group. In the laser etched groups, the specimens were irradiated with 2-watt superpulse carbon dioxide ($CO_2$) laser for 20 seconds. Ceramic brackets were bonded with light-cure composite resin and all specimens were stored in water at $37^{\circ}C$ for 24 hours. Shear bond strength was determined in megapascals (MPa) by shear test at 1 mm/minute crosshead speed and the failure pattern was assessed. For statistical analysis, one-way ANOVA and tukey test were used. Results: Statistical analysis showed significant differences between the groups. The HFA + S group showed the highest mean shear bond strength ($13.92{\pm}1.94\;MPa$). This was followed by SB + S ($10.16\;{\pm}\;1.27\;MPa$), HFA ($10.09\;{\pm}\;1.07\;MPa$), L + S ($8.25\;{\pm}\;1.24\;MPa$), L ($7.86\;{\pm}\;0.96\;MPa$), OFA + S ($7.22\;{\pm}\;1.09\;MPa$), SB ($3.41\;{\pm}\;0.37\;MPa$), OFA ($2.81\;{\pm}\;0.37\;MPa$), G ($2.46\;{\pm}\;1.36\;MPa$), Bond failure patterns of HFA and silane groups, except L + S, were cohesive modes in porcelain while adhesive failure was observed in the control group and the rest of the groups. Conclusions : A 2-watt superpulse $CO_2$ laser etching of porcelain surfaces can provide a satisfactory result for porcelain surface treatment for ceramic bracket bonding. Laser irradiation may be an alternative conditioning method for the treatment of porcelain surfaces.

MARGINAL MICROLEAKAGE AND SHEAR BOND STRENGTH OF COMPOSITE RESIN ACCORDING TO TREATMENT METHODS OF ARTIFICIAL SALIVA-CONTAMINATED SURFACE AFTER PRIMING (접착강화제 도포후 인공타액에 오염된 표면의 처리방법에 따른 복합레진의 번연누출과 전단결합강도)

  • Cho, Young-Gon;Ko, Kee-Jong;Lee, Suk-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2000
  • During bonding procedure of composite resin, the prepared cavity can be contaminated by saliva. In this study, marginal microleakage and shear bond strength of a composite resin to primed enamel and dentin treated with artificial saliva(Taliva$^{(R)}$) were evaluated. For the marginal microleakage test, Class V cavities were prepared in the buccal surfaces of fifty molars. The samples were randomly assigned into 5 groups with 10 samples in each group. Control group was applied with a bonding system (Scotchbond$^{TM}$ Multi-Purpose plus) according to manufacture's directions without saliva contamination. Experimental groups were divided into 4 groups and contaminated with artificial saliva for 30 seconds after priming: Experimental 1 group ; artificial saliva was dried with compressed air only, Experimental 2 group ; artificial saliva was rinsed and dried. Experimental 3 group ; cavities were etched with 35% phosphoric acid for 15 seconds after rinsing and drying artificial saliva. Experimental 4 group ; cavities were etched with 35% phosphoric acid for 15 seconds and primer was reapplied after rinsing and drying artificial saliva. All the cavities were applied a bonding agent and filled with a composite resin (Z-100$^{TM}$). Specimens were immersed in 0.5% basic fuschin dye for 24 hours and embedded in transparent acrylic resin and sectioned buccolingually with diamond wheel saw. Four sections were obtained from one specimen. Degree of marginal leakage was scored under stereomicroscope and their scores were averaged from four sections. The data were analyzed by Kruscal-Wallis test and Fisher's LSD. For the shear bond strength test, the buccal or occlusal surfaces of one hundred molar teeth were ground to expose enamel(n=50) or dentin(n=50) using diamond wheel saw and its surface was smoothed with Lapping and Polishing Machine(South Bay Technology Co., U.S.A.). Samples were divided into 5 groups. Treatment of saliva-contaminated enamel and dentin surfaces was same as the marginal microleakage test and composite resin was bonded via a gelatin capsule. All specimens were stored in distilled water for 48 hours. The shear bond strengths were measured by universal testing machine (AGS-1000 4D, Shimaduzu Co., Japan) with a crosshead speed of 5 mm/minute. Failure mode of fracture sites was examined under stereomicroscope. The data were analyzed by ANOVA and Tukey's studentized range test. The results of this study were as follows : 1. Enamel marginal microleakage showed no significant difference among groups. 2. Dentinal marginal microleakages of control, experimental 2 and 4 groups were lower than those of experimental 1 and 3 groups (p<0.05). 3. The shear bond strength to enamel was the highest value in control group (20.03${\pm}$4.47MPa) and the lowest value in experimental 1 group (13.28${\pm}$6.52MPa). There were significant differences between experimental 1 group and other groups (p<0.05). 4. The shear bond strength to dentin was higher in control group (17.87${\pm}$4.02MPa) and experimental 4 group (16.38${\pm}$3.23MPa) than in other groups, its value was low in experimental 1 group (3.95${\pm}$2.51 MPa) and experimental 2 group (6.72${\pm}$2.26MPa)(p<0.05). 5. Failure mode of fractured site on the enamel showed mostly adhesive failures in experimental 1 and 3 groups. 6. Failure mode of fractured site on the dentin did not show adhesive failures in control group, but showed mostly adhesive failure in experimental groups. As a summary of above results, if the primed tooth surface was contaminated with artificial saliva, primer should be reapplied after re-etching it.

  • PDF