• Title/Summary/Keyword: estrogenic effects

Search Result 169, Processing Time 0.021 seconds

Endocrine - Mimicking Phytoestrogens: Health Effects and Signaling

  • Ahn, Hae Sun;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.479-486
    • /
    • 2004
  • Phytoestrogens display estrogen-like activity because of their structural similarity to human estrogens and exhibit high affinity binding for the estrogen receptors (ERs). The prevalence of phytoestrogens in our diets and the biological effects that they may cause need to be fully examined. ER is the ancestral receptor from which all other steroid receptors have evolved. Although phytoestrogens serve specific signaling functions between the plants and insects, fungi, and bacteria, many chemical signals are often misinterpreted as estrogenic signals in non-target organisms such as vertebrates. There are no ERs in plants or in their most common partners, insects. However, Rhizobium soil bacteria have NodD proteins which is an intended target of phytoestrogen signaling and share genetic homology with the ER. These two evolutionarily distant receptors both recognize and respond to a shared group of chemical signals and ligands, including both agonists and antagonists. This review briefly summarizes estrogen and estrogen receptors, kinds of important phytoestrogens, their health effects as well as some of the evolutionary aspects of mechanism by which phytoestrogen mimics the endogenous ER signaling in our body.

Isoflavones: Chemistry, Analysis, Functions and Effects on Health and Cancer

  • Ko, Kwang-Pil
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7001-7010
    • /
    • 2014
  • Isoflavones are phytoestrogens and natural plant compounds which are similar to 17-${\beta}$-estradiol in chemical structure. It is known that they can act as estrogen agonists or antagonists, depending on endocrine estrogenic levels, but actions of isoflavones are rather complex due to large number of variables such as chemical structures and mechanisms. Some hypotheses on biological mechanisms have not satisfactorily been confirmed to date and human epidemiological and experimental studies have been relatively limited. Nevertheless, isoflavones and isoflavone rich foods have become a focus onf interest due to positive health benefits on many diseases, especially prevention of hormone-related cancers, cardiovascular disease, osteoporosis, and adverse postmenopausal symptoms, and improvement of physiological condition such as maintaining cognitive function. This review provides an overview of chemistry, analytical techniques (focused on human biospecimens), functions including biological mechanisms, and effects of isoflavones, on the basis of the available meta-analysis and review articles and some original articles, on health and cancer.

Effects of Acute Oral Administration of Mancozeb on the Immune Function in Mice (Mancozeb의 급성노출이 마우스의 면역기능에 미치는 영향)

  • 정애희;표명윤
    • YAKHAK HOEJI
    • /
    • v.48 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • Mancozeb, a polymeric complex of zinc and manganese salts of ethylene bisthiocarbamate (EBDC), is used widely in agriculture as fungicides, insecticides, and herbicides. Mancozeb can be occupationally and environmentally exposed to human and has been reported to induce estrogenic activity, therein it is considered as an endocrine disrupter, We investigated the effects of acute exposure of Mancozeb on the immune function in mice. After single oral administration of Mancozeb to female ICR mice, the immunopathological parameters (body- and organ-weight, splenic cellularity hematological parameters), mitogen (Con A, PHA+IL-2, LPS)-induced splenocyte proliferation (SP) and splenic IgM plaque forming cell (PFC). WBC and splenic cellularity were decreased, but liver-, kidney-, and spleen-weight were increased when compared with control group. Splenic IgM PFC against SRBC was slightly lowered. Mitogen-induced proliferation of spleen cells from Mancozeb-treated mice was not signifcantly changed ex vivo, however, SP in vitro were significantly lowered in concentration dependent manner. These results indicate that Mancozeb could affect the immune function in mice.

A Study on the Estrogenicity of Korean Arrowroot (Pueraria thunbergiana) (한국산 칡의 Estrogen 활성에 관한 연구)

  • Kim, So-Jung;Park, Chul;Kim, Hae-Gyoung;Shin, Wan-Chul;Choe, Suck-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • To assess the estrogenicities of Korean arrowroot (Pueraria thunbergiana) the contents of nine phytochemicals which are known to present were analyzed by HPLC. Also the estrogenecities of these phytochemicals were assayed using estrogen receptor dependent transcriptional expression assay. Daidzein and puerarin are major compounds in arrowroot, which were contained in the order of: root>stem>leaf>flower>seed. Among the assayed phytochemicals daidzein, genistein, biochanin A, formononetin, puerarin and genistin were highly estrogenic. The total estrogenicities in different parts of arrowroot and those by regions in Korea were also assessed. Roots had the highest estrogenic effects. The estrogenicities also were shown in stem and leaf. The differences in the estrogenicities of arrowroots by regions in Korea were shown. These results demonstrated that the estrogenic phytochemicals content was the highest in Korean arrowroot and also present in stem and leaf.

Evaluation of the Immune Response Following Exposure of Mice to Bisphenol A: Induction of Th1 Cytokine and Prolactin by BPA Exposure in the Mouse Spleen Cells

  • Youn, Ji-Youn;Park, Hyo-Young;Lee, Jung-Won;Jung, In-Ok;Choi, Keum-Hwa;Kim, Kyung-Jae;Cho, Kyung-Hea
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.946-953
    • /
    • 2002
  • Bisphenol A [2, 2 bis (4-hydoxyphenyl) propane; BPA] is a widely used endocrine disruptors and has estrogenic: activities. Although interests on biological effect of BPA are rising, evidences of its effect on immune system are lacking. We investigated that the effect of BPA on immune parameters to postulate the mechanism, and BPA interruptions between neuroendocrine and immune system. BPA was administrated to mice by p.o. (as a drinking water) dose on 0.015, 1.5 and 30 mg/ml for 4 weeks. The BPA treatment did not result in any change in body weight, spleen weight and distribution of lymphocyte subpopulation collected from spleen. BPA induced prolactin production in spleen, and exposure of SPA increased the activity of splenocyte proliferation in response to Con A (p<0.001). The production of a strong Th-1 type cytokine ($IFN-{\gamma}$) was induced while Th-2 type (IL-4) was suppressed by SPA treatment. These were consistent with RT-PCR results of transcription factor GATA-3 and IRF-1. These findings suggested that stimulation of prolactin production by estrogenic effects of SPA would affect cytokine profiles, and lead to imbalanced cellular immune response. In addition, we could speculate that prolactin and cytokine is important mediator involved in network between neuroendocrine and immune system by BPA.

Hormonal Effects of Several Chemicals in Recombinant Yeast, MCF-7 Cells and Uterotrophic Assays in Mice

  • Park, Jin-Sung;Lee, Beom-Jun;Kang, Kyung-Sun;Tai, Joo-Ho;Cho, Jae-Jin;Cho, Myung-Haing;Inoue, Tohru;Lee, Yong-Soon
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.293-299
    • /
    • 2000
  • Many methods have been developed for screening chemicals with hormonal activity. Using recombinant yeasts expressing either human estrogen receptor [Saccharomyces cerevisiae ER + LYS 8127 (YER)] or androgen receptor [S. cerevisiae AR + 8320 (YAR)], we evaluated the hormonal activities of several chemicals by induction of ${\beta}-galactosidase$ activity. The chemicals were $17{\beta}-estradiol$ (E2), testosterone (T), ${\rho}-nonylphenol$ (NP), bisphenol A (BPA), genistein (GEN), 2-bromopropane (2-BP), dibutyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and butylparaben (BP). To assess the estrogenicity of NP, the result of the in vitro recombinant yeast assay was compared with an E-screen assay using MCF-7 human breast cancer cells and an uterotrophid assay using ovariectomized mice. In the YER yeast cells, E2, NP, BPA, GEN, and BP exhibited estrogenicity in a doseresponse manner, while TCDD did not. All the chemicals tested, except T, did not show androgenicity in the YAR yeast cell. The sensitivity of the yeast (YER) assay system to the estrogenic effect of NP was similar to that of the E-screen assay. NP was also estrogenic in the uterotrophic assay. However, in terms of convenience and costs, the yeast assay was superior to the E-screen assay or uterotrophic assay. These results suggest that the recombinant yeast assay can be used as a rapid tool for detecting chemicals with hormonal activities.

  • PDF

Natural Products for Cancer-Targeted Therapy: Citrus Flavonoids as Potent Chemopreventive Agents

  • Meiyanto, Edy;Hermawan, Adam;Anindyajati, Anindyajati
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.427-436
    • /
    • 2012
  • Targeted therapy has been a very promising strategy of drug development research. Many molecular mechanims of diseases have been known to be regulated by abundance of proteins, such as receptors and hormones. Chemoprevention for treatment and prevention of diseases are continuously developed. Pre-clinical and clinical studies in chemoprevention field yielded many valuable data in preventing the onset of disease and suppressing the progress of their growth, making chemoprevention a challenging and a very rational strategy in future researches. Natural products being rich of flavonoids are those fruits belong to the genus citrus. Ethanolic extract of Citrus reticulata and Citrus aurantiifolia peels showed anticarcinogenic, antiproliferative, co-chemotherapeutic and estrogenic effects. Several examples of citrus flavonoids that are potential as chemotherapeutic agents are tangeretin, nobiletin, hesperetin, hesperidin, naringenin, and naringin. Those flavonoids have been shown to possess inhibition activity on certain cancer cells' growth through various mechanisms. Moreover, citrus flavonoids also perform promising effect in combination with several chemotherapeutic agents against the growth of cancer cells. Some mechanisms involved in those activities are through cell cycle modulation, antiangiogenic effect, and apoptosis induction.Previous studies showed that tangeretin suppressed the growth of T47D breast cancer cells by inhibiting ERK phosphorylation. While in combination with tamoxifen, doxorubicin, and 5-FU, respectively, it was proven to be synergist on several cancer cells. Hesperidin and naringenin increased cytotoxicitity of doxorubicin on MCF-7 cells and HeLa cells. Besides, citrus flavonoids also performed estrogenic effect in vivo. One example is hesperidin having the ability to decrease the concentration of serum and hepatic lipid and reduce osteoporosis of ovariectomized rats. Those studies showed the great potential of citrus fruits as natural product to be developed as not only the source of co-chemotherapeutic agents, but also phyto-estrogens. Therefore, further study needs to be conducted to explore the potential of citrus fruits in overcoming cancer.

Uterotrophic Assay Using Ovariectomized Female Rats with Sub-cutaneous Administration

  • Kim, Hyung-Sik;Han, Soon-Young;Lee, Rhee-Da;Kil, Kwang-Sup;Park, Kui-Lea
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.78-83
    • /
    • 2000
  • The objective of this study was to prevalidate the Organization for Economic Cooperation and Development's (OECD) rodent uterotrophic assay as a test method for screening of potential endocrine disrupting chemicals (EDCs). This study was conducted exactly as described in the OECD protocol documents. A positive control substance, 17$\alpha$-ethinyl estradiol (EE), was administered daily for three days to ovariectomized (OVX) Sprague-Dawley rats at various doses for determine the dose-response curve. Additionally, a pure antiestrogenic chemical, ZM189, 154 was administered to OVX rats at the same time EE to determine the effectiveness of the material against blocking the estrogenic effects of EE. At higher concentration of EE (10 $\mu\textrm{g}$/kg), a statistically significant difference in body weight gain and food consumption was observed compared to vehicle controls. In uterine responses, EE produced a dose-related increase in uterus weights compared to vehicle control. These increases were statistically significant at the >1.0 $\mu\textrm{g}$/kg doses. However, a similar dose-response relationship was not observed in vagina weight. A comparison of the two groups receiving ZM189,154 (0.1 and 1.0 mg/kg) with 0.3 $\mu\textrm{g}$/kg of EE and the group receiving only 0.3 $\mu\textrm{g}$/kg of EE showed dose-related decreases in uterus weights. However, statistical significance was shown in 1.0 mg/kg of ZM189,154. In conclusion, administration of EE produced a dose-related increase in uterine (wet and blotted) weights. Additionally, the 1.0mg/kg dose of ZM189,154 was effective in blocking the estrogenic activity of EE. These data suggest 3-day uterotrophic assay using OVX rats may serve as a good tool for EDCs screening.

  • PDF

Degradation of Endocrine Disrupting Chemicals by Laccase Transformant of Phlebia tremellosa (아교버섯 형질전환체를 이용한 내분비장애 물질의 분해)

  • Yeo, Su-Min;Kim, Myung-Kil;Choi, Hyoung T.
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.10-13
    • /
    • 2008
  • Endocrine disrupting chemicals (EDCs) are hard to be degraded in nature, and are also accumulated in diverse organisms. They finally give negative effects to human through the food web. White rot fungi which have lignin-degrading enzymes have high potentials for degradation of recalcitrant compounds, and a white rot fungus, Phlebia tremellosa, isolated in Korea show good degrading activity against the endocrine disrupting phthalates. We have isolated a laccase cDNA which was involved in the degradation of EDCs, and constructed a laccase expression vector to use in the genetic transformation of P. tremellosa. The expression vector was stably integrated into the chromosomal DNAs and showed increased laccase activity in transformants. One of transformants showed not only increased degradation of several EDCs but also faster estrogenic decreasing activities generated by the EDCs.

Biodegradation of Endocrine Disrupting Chemicals by Genetic Transformants of Phlebia tremellosa Using Manganese Peroxidase Gene from Trametes versicolor (구름버섯 망간 과산화효소를 도입한 아교버섯 형질전환체에 의한 내분비장애 물질의 생분해)

  • Kum, Hyun-Woo;Kim, Myung-Kil;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.82-85
    • /
    • 2009
  • Endocrine disrupting chemicals (EDCs) disturb animal hormonal system even at very low concentrations, and finally give harmful effects to human through the food web. A white rot fungus Phlebia tremellosa isolated in Korea, was reported to have good degrading activity against the endocrine disrupting phthalates. However, this fungus has very low manganese peroxidase (MnP) activity under various culture conditions while laccase and lignin peroxidase activities were high. We have isolated an MnP cDNA from Trametes versicolor which was involved in the degradation of EDCs, and constructed an MnP expression vector to use in the genetic transformation of P. tremellosa in order to get higher MnP producing strains. Many transformants had integrated expression vector in their chromosomal DNAs, and showed increased MnP activity. One of two transformants showed increased degradation of 4 EDCs (70${\sim}$88%) than the wild type (30${\sim}$45% degradation rates), and showed twice better removal of estrogenic activities generated by the EDCs than the wild type.