구간검지시스템에서 수집되는 통행시간 정보는 과거 개별차량의 검지기 통과시각(도착시각)을 기준으로 수집되는 특성이 있다. 따라서 구간검지시스템에 의해 수집되는 통행시간 정보는 도착시각기준이 아닌 출발시각기준으로 산출되어야 하고 현재시점(On-Line)에서 통행시간 추정 및 예측이 되어야 한다. 그러나 기존의 구간검지시스템을 이용한통행시간 추정 및 예측 연구들은 도착시각기준으로 수집되는 개별차량 통행시간 자료를 이용함으로 출발시각기준 On-Line 통행시간 정보 관련 연구를 체계적으로 접근하기 어려운 실정이다. 본 연구에서는 On-Line 출발시각기준의 통행시간 정보의 개념을 정립하고 이에 따른 시사점을 도출하였다 그리고 베이지안 추론을 이용하여 고속도로를 대상으로 한 출발시각기준의 On-Line 링크통행시간 추정 알고리즘을 개발하였다. 그 결과, 본 연구에서 개발한 알고리즘은 On-Line 통행시간 정보 질의 정확성과 신속성 측면에서 개선된 통행시간 대표값(평균값)을 추정하는 것으로 나타났다.
실시간 통행시간관련자료의 집계시간간격은 보다 신뢰성있는 통행시간정보제공과 교통정보센터의 효율적인 운영을 위해 매우 중요한 요소이다. 그러나 대부분의 기존 VDS 및 TCS교통정보 데이터는 통계학적·공학적 차원에서의 합리적인 연구나 검증없이 경험적 간격으로 집계되고 있다. 본 연구의 목적은 링크 및 교통축(Corridor) 통행시간 산정 및 예측시의 최적 집계 시간간격을 결정할 수 있는 통계학적 모형을 개발하고 실제 도로망에서 수집되는 통행시간자료에 적용하는 것이다 첫째로, 본 연구는 링크 및 교통축 통행시간 산정 및 예측으로 인한 오차를 계량화하는 통계학적 모형을 제시하고, 제시된 모형의 의미를 교통류이론 측면과 통행시간정보 이용자측면에서 살펴보았다. 둘째로, 미국 Texas, Houston의 도시고속도로에서 AVI시스템을 통해 수집된 통행시간자료를 제시된 모형에 적용하였다. 적용결과 링크통행시간 산정을 위한 최적 집계시간간격보다 링크통행시간예측을 위한 최적 집계시간간격이 큰 것으로 나타났으며, 교통축 통행시간 산정 및 예측을 위한 최적 집계시간간격은 교통축을 구성하는 링크간의 상관관계 (Correlation)에 큰 영향을 받는 것으로 분석되었다.
Vehicle travel time (empty travel time pius loaded travel time) is a key parameter for designing AGV-based material handling systems. Especially, the determination of empty vehicle travel time is difficult because of the stochastic nature of the empty vehicle locations. This paper presents a method to estimate vehicle travel times for AGV-based material transport systems. The model considers probabilistic aspects for the travel time and vehicle location under random vehicle selection rule and nearest vehicle selection rule. The estimation of empty travel time is of major effort. Simulation experiments are used to verify the proposed travel time model, and the simulation results show that the presented model provides reasonable travel time estimations.
본 연구에서는 고속도로 교통관리시스템에서 VDS 교통정보 와 대상지역의 TCS로부터 여행시간을 수집하고, 이들 자료를 토대로 신경망 이론을 이용한 여행시간 추정(Estimation)모형을 구축하였다. 또한, 신경망 이론에 칼만필터기법(Kalman Filter Technique)을 연계하여 단위시간 동안의 여행시간을 예측(Prediction)하여, 고속도로 이용자에게 보다 향상된 실시간 여행시간정보를 제공할 수 있는 여행시간 추정 및 예측 알고리즘을 개발하였다. 신경망 모형의 여행시간 추정 방식과 현재 적용되고 있는 여행시간 산출 방식의 비교/분석을 위해 각 각의 여행시간 산출방식에 의한 평가지표별로 시행한 평가의 결과는 신경망 모형이 제시한 대부분의 지표에서 상대적으로 우수하게 나타났다.
PURPOSES : The travel times of expressway buses have been estimated using the travel time data between entrance tollgates and exit tollgates, which are produced by the Toll Collections System (TCS). However, the travel time data from TCS has a few critical problems. For example, the travel time data include the travel times of trucks as well as those of buses. Therefore, the travel time estimation of expressway buses using TCS data may be implicitly and explicitly incorrect. The goal of this study is to improve the accuracy of the expressway bus travel time estimation using DSRC-based travel time by identifying the appropriate analysis period of input data. METHODS : All expressway buses are equipped with the Hi-Pass transponders so that the travel times of only expressway buses can be extracted now using DSRC. Thus, this study analyzed the operational characteristics as well as travel time patterns of the expressway buses operating between Seoul and Dajeon. And then, this study determined the most appropriate analysis period of input data for the expressway bus travel time estimation model in order to improve the accuracy of the model. RESULTS : As a result of feasibility analysis according to the analysis period, overall MAPE values were found to be similar. However, the MAPE values of the cases using similar volume patterns outperformed other cases. CONCLUSIONS : The best input period was that of the case which uses the travel time pattern of the days whose total expressway traffic volumes are similar to that of one day before the day during which the travel times of expressway buses must be estimated.
PURPOSES : This investigational survey is to observe a proper spatial aggregation method for path travel time estimation using the hi-pass DSRC system. METHODS : The links which connect the nodes of section detectors location are used for path travel time estimation traditionally. It makes some problem such as increasing accumulation errors and processing times. In this background, the new links composition methods for spatial aggregation are considered by using some types of nodes as IC, JC, RSE combination. Path travel times estimated by new aggregation methods are compared with PBM travel times by MAE, MAPE and statistical hypothesis tests. RESULTS : The results of minimum sample size and missing rate for 5 minutes aggregation interval are satisfied except for JC link path travel time in Seoul TG~Kuemho JC. Thus, it was additionally observed for minimum sample size satisfaction. In 15, 30 minutes and 1 hour aggregation intervals, all conditions are satisfied by the minimum sample size criteria. For accuracy test and statistical hypothesis test, it has been proved that RSE, Conzone, IC, JC links have equivalent errors and statistical characteristics. CONCLUSIONS : There are some errors between the PBM and the LBM methods that come from dropping vehicles by rest areas. Consequently, this survey result means each of links compositions are available for the estimation of path travel time when PBM vehicles are missed.
1990년대 후반부터 구간 검지기를 이용한 링크통행시간 추정에 필요한 최소 표본수와 링크 및 경로 통행시간 추정과 예측을 위한 적정 집계간격에 대한 연구가 폭넓게 진행되어 왔다. 그러나 루프(지점)검지기를 이용한 교통정보수집체계의 경우, 합리적인 검증 없이 선정된 1분~5분의 집계간격을 이용하고 있다. 본 연구의 목적은 지점검지기인 루프검지기를 이용하여 통행시간자료를 수지하는 경우, 링크 및 경로 통행시간 추정과 예측을 위한 적정 집계간격 결정 모형을 개발하고 현장의 자료에 적용하는 것이다. 본 논문은 링크 및 경로 통행시간 추정을 위한 적정 집계간격 결정 모형으로 CVMSE(Cross Validated Mean Square Error)방법을 이용하였으며, 링크 및 경로 통행시간 예측을 위한 적정 집계간격 결정 모형으로는 FMSE(Forecasting Mean Square Error)를 적용하였다. 개발된 방법론은 경부고속도로의 루프이터에 적용되었다. 적용결과 링크 및 경로 통행시간 추정을 위한 적정 집계간격은 3분~5분으로, 링크 및 경로 통행시간 예측을 위한 적정 집계간격은 10~20분으로 분석되었다.
운전자가 원하는 통행시간 예측 정보를 제공하기 위해서는 이미 알고 있는 교통상황 하에서의 통행시간 추정이 선행되어야 한다. 그러나 현재 고속도로에 적용되고 있는 지점검지기에 의한 통행시간 추정 방법은 신뢰성 있는 통행시간을 산출하기에는 한계가 있다. 따라서 본 연구에서는 신뢰성 있는 예측정보를 제공하기 위한 기반 결과로서 고속도로 경로의 기 종점 영업소 간에서 실제 소요된 통행시간의 추정에 주안점을 두었다. 통행시간 추정시 교통정보의 활용도 측면에서 매우 유용하면서도 풍부한 고속도로 통행료 수납시스템 (Toll Collection System, TCS) 자료를 이용하였다. 경로통행시간 추정모형에서는 경로 내의 링크통행시간을 조합하여 고속도로의 경로통행시간을 추정하였다. TCS 자료가 결측 된 경우에는 통행시간의 증가패턴을 분석하여 선형보간법을 통해 이전주기의 TCS 통행시간을 참조하였다. 결측이 장기간 지속되거나 통행시간의 변동이 심한 전이시간대에는 VDS 시공도에 의한 동적인 통행시간을 추정하였다. 본 연구에서 제안한 모형을 통해 추정된 경로의 통행시간은 경로를 직접 통행한 차량들의 통행시간과 통계적으로 차이가 없음이 검증되었다. 제안모형은 동일 출발 시간대에서는 통행시간의 편차가 심하고 전 후 시간대에서는 통행시간 대푯값의 변화 패턴이 불규칙한 장거리 구간에 대해 신뢰성 있는 통행시간을 추정할 수 있었다. 본 연구에서 추정된 통행시간은 교통 상황의 성능 지표 및 실시간 통행시간 예측 분야에 활용될 수 있을 것으로 기대된다.
본 연구의 목적은 수도권 남부 국도 ITS 시범구간인 국도 3호선의 장지IC~곤지암IC구간에서 수집되는 교통자료를 기반으로 자기조직형 신경망 이론을 도입하여 국도구간의 통행시간 추정모형을 개발하는 방안을 제시하는 것이다. 지점 검지기 적정 설치위치와 구간의 연장 및 연도의 토지이용특성이 단속류의 구간통행시간에 영향을 미침을 확인하였으며, 구간 통행시간 추정을 위해 기존의 인공신경망 모형이 가지는 추가학습이 불가능하다는 단점과 신경망 구조의 최적구성이 어려운 점 등을 고려하여 자기조직형 인공신경망 구조방법을 도입하였다. 통행시간 추정결과 기존 검지기에서 수집된 자료와 최적위치에서 수집된 자료를 이용하여 모형을 검증한 결과 통행특성을 가장 잘 반영하는 지점자료를 활용한 모형의 추정력이 우수한 것으로 나타났다. 이러한 시도는 향후 국도 ITS 사업의 설계에서 검지기의 설치 위치 선정에 응용할 수 있을 것으로 기대된다.
ATMS는 양방향통신이 가능한 DSRC 통신방식을 이용하여 기지국을(RSE) 통과하는 하이패스장착차량과 통신하며, 두 지점간 동일한 ID를 가지는 차량의 RSE 통신시간 자료를 활용하여 구간별 통행시간을 산출하고 있다. 도시부 통행의 특성은 신호교차로로 인하여 수집 주기에 따라 통행시간이 매우 불규칙하지만 직전 수집 주기의 데이터만 사용하는 기존 통행시간 가공 방법으로는 현재 통행시간을 추정하기가 어려웠다. 본 연구에서는 직전 수집주기의 데이터 뿐 아니라 해당 시간대의 과거데이터인 패턴데이터를 퓨전하여 가공하는 방법을 분석하였다. 분석 대상 구간은 전주시 주간선도로 기능을 하고 있는 백제대로로 선정하였으며, 수집데이터의 이상치제거 및 패턴데이터 구축 등은 기존 연구방법을 활용하였다. 분석결과 실시간 데이터(20%), 패턴 데이터(80%)의 비율로 추정한 데이터와 해당 주기에 통행한 데이터의 평균 오차값(절대값)이 37.5s이며, t-검증을 통한 검증 결과 95%의 유의수준에서 최소인 것으로 분석되었다. 따라서 직전 수집 주기에 수집된 데이터와 해당 시간의 패턴데이터를 활용하여 통행시간을 추정하는 방법이 시내부 통행시간 가공방안으로 적합하다고 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.