• Title/Summary/Keyword: estimation of solid deposition

Search Result 8, Processing Time 0.02 seconds

Development of Estimation Equations for Solid Deposition in Sewer Systems due to Rainfall (강우로 인한 관거 내 고형물 퇴적량 산정식 개발)

  • Lee, Jae-Soo;Lee, Se-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.885-894
    • /
    • 2008
  • The deposition of solids in combined sewer systems results in a loss of flow capacity that may restrict flow and cause a local flooding and enhanced solids deposition. In order to solve these problems and proper pipe management, estimations of solid loads on land surface in a drainage basin and solid deposition in sewer system due to rainfall are needed but these tasks are very difficult and very expensive. In this study, procedures for estimating solid loads on surface in a drainage basin were applied and analyzed in Gunja drainage basin in Korea. Also, this paper presents the development and application of estimation equation for solid deposition in sewer system due to rainfall based on the solid deposition estimated using MOUSE model. As results, the comparison between estimated and measured solid deposition is difficult due to the absent of measured data, but the estimated values using developed equations show applicability compared with the results of MOUSE model and the application of the other basin. The developed estimation equations can be used usefully for the management of combined sewer system.

Development of Estimation Equations for Solid Deposition in Sewer Systems (관거 내 고형물 퇴적량 산정식 개발)

  • Lee, Jae-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.5
    • /
    • pp.409-418
    • /
    • 2007
  • Combined sewer solid deposition during dry weather periods and their resuspension during wet weather periods has long been recognized as a major contributor to the first-flush phenomenon. Also, these deposition of sewer solids results in a loss of flow capacity that may restrict flow and cause a local flooding at urban area. In order to solve these problems, measurement of solid deposition for a given sewer system for extended period is needed but this task is very difficult and extremely expensive. This paper presents the development and applicability of estimation equations for solid deposition in sewer systems based on the solid deposition estimated using MOUSE model. As results, the comparison between estimated and measured solid deposition is difficult due to the absent of measured data, but the estimated values using developed equations show applicability compared with the results of MOUSE model and the estimation equations developed by the EPA.

Estimation of Solid Deposition in Sewer Systems using MOUSE Model (MOUSE 모형을 이용한 관거 내 고형물 퇴적량 산정)

  • Lee, Jae-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.5
    • /
    • pp.397-407
    • /
    • 2007
  • The deposition of sewer solids during dry weather in combined sewer systems results in a loss of flow capacity that may restrict flow and cause a local flooding and enhanced solids deposition. In order to solve these problems and to manage sewer systems efficiently, development of estimation equations for solid sediments In sewer systems is needed. However, estimation of solid sediments has performed using specific methods such as computer model before the development of estimation equations. In this study, solid sediments in sewer systems were estimated using MOUSE model for Gunja drainage basin in Korea and the estimated results were verified using estimation equations developed by the U.S. Environmental Protection Agency. As results, the estimated values using MOUSE model are smaller than that of equations developed in 1977 but greater than that of equations developed in 1984. Although the comparison between simulated and measured solid deposition is difficult due to the absent of measurement data, the estimated values using MOUSE model is reliable and can be used to develop estimation equations for solid sediment in Gunja drainage basin.

Analysis of Estimation Technique for Solid Sediments in Combined Sewer Systems (합류식 관거 내 고형물 퇴적량 산정기법 분석)

  • Lee, Jae-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.405-415
    • /
    • 2006
  • The deposition of sewer solids during dry weather in combined sewer systems results in a loss of flow capacity that may restrict flow and cause a local flooding and enhanced solids deposition. Sewer solid accumulations in drainage systems also create the 'first-flush' phenomena during wet weather runoff periods. In order to solve these problems, measurement of these loadings for a given sewer system for extended period is needed but this task is very difficult and extremely expensive. In this study, generalized procedures for estimating sewer sediment solid during dry weather in combined sewer systems developed by the U. S. Environmental Protection Agency were applied in a drainage system in Korea. As result, the appropriate equation can be selected and applied according to the available data. However, the estimated solid sediment shows considerable difference between methods which classified by model and estimation methods of variable. The estimated values using equations (1) $\sim$ (4) are greater than that of equations (5) $\sim$ (9) and intermediate models show greater values than elaborate or simplest models. The comparison between simulated and measured solid deposition is difficult due to the absent of measurement data, but this estimation method can be used usefully for the management of sewer solid with reduction of cost and effort if the measurement is carried out and the equation is adjusted according to the actual drainage systems in Korea.

Estimation of Solid Sediments Load by Sewer and Land Surface for Maintenance of Combined Sewer Systems (합류식 관거 유지관리를 위한 하수 및 지표면 고형물 부하량 산정)

  • Lee Jae-Soo;Park Moo-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.533-544
    • /
    • 2006
  • The deposition of solids in combined sewer systems results in a loss of flow capacity that may restrict flow and cause a local flooding and enhanced solids deposition. In order to solve these problems and proper pipe management, estimation of solid loads from sewer and surface in a drainage basin is needed but this task is very difficult and extremely expensive. In this study, generalized procedures for estimating sewer solid loads during dry weather in combined sewer systems and for estimating solid loads on surface in a drainage basin developed by the U. S. Environmental Protection Agency were applied and analyzed in Gunja drainage basin in Korea. As result, the estimated solid loads from sewer and surface are 205.8,759kg/yr and 1,321,993kg/yr respectively, and total solid loads is 1,527,752kg/yr. The estimated solid removal from street cleaning, dredging from pipe system and pumping house is 1,486,636kg/yr. Therefore, the applied methods show resonable results. More reliable estimation can be achieved if long-term measurements and adjustment of estimation equations are carried out, and this estimation methods can be used usefully for the management of combined sewer system with reduction of cost and effort.

VALIDATION OF NUMERICAL APPROACH FOR THE SEDIMENT OF MULTI-SIZE PARTICLES IN A FLUID CONTAINER (다양한 크기를 갖는 입자들의 유체 용기 내부에서의 침전에 대한 수치적 접근방법의 검증)

  • Ji, Youngmoo;Choi, Sangmin
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • In this paper, we reported the verification of numerical simulation approach for sedimentation of the multi-size particles in a container. The comparison between experimentally measured values and numerically evaluated values on settle down process of fully mixed mixture is carried out. In an attempt to represent the natural particle size distribution, various diameters of single particles are simulated and the results are compared with the outcome of the multi-size computation. When the empirical formula for mean particle size estimation is adopted to define the sediment diameter, computation and comparison are conducted.

Topographical Change Monitoring of the Sandbar and Estimation of Suspended Solid Flux in the Nakdong River Estuary - Focused on Jinudo - (낙동강 하구역 사주지형 변동과 부유사(SS) 수송량 산정 - 진우도를 중심으로 -)

  • Lee, I.C.;Lim, S.P.;Yoon, H.S.;Kim, H.T.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.70-77
    • /
    • 2008
  • In this study, to establish countermeasure from marine casualties as a basic study fur long-term prediction of topographical change around Jinudo in the Nakdong river estuary, spatio-temporal topographical change monitoring was carried out. Also, in order to estimate the deposition variations concerning SS (Suspended Solid) flux which moved at St.S1 during neap and spring tide, respectively. From the topographical monitoring, it was found that the annual mean ground level and deposition rate were 141 mm and 0.36 mm/day and all parts except the northern part of Jinudo had the active topographical changes and a tendency to annually deposit. From vertical distribution of SS net fluxes, $SS_{LH}$ (latitudinal SS net flux) during spring tide overall flows average 28 $kg/m^2/hr$ (eastward), and $SS_{LV}$ (longitudinal SS net flux) flows average 11.1 $kg/m^2/hr$ (northward). And, $SS_{LH}$ overall flows average 4.8 $kg/m^2/hr$ (eastward), and $SS_{LV}$ flows average 1.5 $kg/m^2/hr$ (northward) during neap tide similar with spring tide. The depth averaged values of the latitudinal and longitudinal SS net fluxes during spring tide were approximately 6 times higher than those during neap tide. As result of, it was considered that topographical change of southern part of Jinudo was affected by resuspension of bottom sediments due to strong current in bottom layer during flood flow.

  • PDF

COMPARISON OF DIFFUSION COEFFICIENTS AND ACTIVATION ENERGIES FOR AG DIFFUSION IN SILICON CARBIDE

  • KIM, BONG GOO;YEO, SUNGHWAN;LEE, YOUNG WOO;CHO, MOON SUNG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.608-616
    • /
    • 2015
  • The migration of silver (Ag) in silicon carbide (SiC) and $^{110m}Ag$ through SiC of irradiated tristructural isotropic (TRISO) fuel has been studied for the past three to four decades. However, there is no satisfactory explanation for the transport mechanism of Ag in SiC. In this work, the diffusion coefficients of Ag measured and/or estimated in previous studies were reviewed, and then pre-exponential factors and activation energies from the previous experiments were evaluated using Arrhenius equation. The activation energy is $247.4kJ{\cdot}mol^{-1}$ from Ag paste experiments between two SiC layers produced using fluidized-bed chemical vapor deposition (FBCVD), $125.3kJ{\cdot}mol^{-1}$ from integral release experiments (annealing of irradiated TRISO fuel), $121.8kJ{\cdot}mol^{-1}$ from fractional Ag release during irradiation of TRISO fuel in high flux reactor (HFR), and $274.8kJ{\cdot}mol^{-1}$ from Ag ion implantation experiments, respectively. The activation energy from ion implantation experiments is greater than that from Ag paste, fractional release and integral release, and the activation energy from Ag paste experiments is approximately two times greater than that from integral release experiments and fractional Ag release during the irradiation of TRISO fuel in HFR. The pre-exponential factors are also very different depending on the experimental methods and estimation. From a comparison of the pre-exponential factors and activation energies, it can be analogized that the diffusion mechanism of Ag using ion implantation experiment is different from other experiments, such as a Ag paste experiment, integral release experiments, and heating experiments after irradiating TRISO fuel in HFR. However, the results of this work do not support the long held assumption that Ag release from FBCVD-SiC, used for the coating layer in TRISO fuel, is dominated by grain boundary diffusion. In order to understand in detail the transport mechanism of Ag through the coating layer, FBCVD-SiC in TRISO fuel, a microstructural change caused by neutron irradiation during operation has to be fully considered.