• Title/Summary/Keyword: estimation of noise damage

Search Result 60, Processing Time 0.028 seconds

Harmonic State Estimation in Power System (전력시스템 고조파 상태 추정에 관한 연구)

  • Park, H.C.;Lee, J.P.;Wang, Y.P.;Chong, H.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.117-120
    • /
    • 2002
  • Electrical power system has very complexity problem that it is plan measurement system to achieve Harmonic State Estimation (HSE). This complexity problem depends on discord of necessary accuracy, certainty of noise that exist in data communication damage and converter, adaptability of network modification and minimum of expense size of system, estimated monitering. Also, quantity of available measurement equipment for harmonic measurement has been limited. Therefore, systematic method that choose measurement location for harmonic state estimation. This paper is that see proposed HSE that use Observability Analysis(OA) for harmonic state estimation of electrical power system. OA depends on measurement number, measurement location and measurement form here, it is analysis method that depend on network form and admittance of the system. OA used achieve harmonic state estimation that it is Applied to New Zealand electrical power system to prove validity of HSE algorithm that propose. This study result about harmonic state estimation of electrical power system displayed very economical and effective method by OA.

  • PDF

Comparison of various structural damage tracking techniques based on experimental data

  • Huang, Hongwei;Yang, Jann N.;Zhou, Li
    • Smart Structures and Systems
    • /
    • v.6 no.9
    • /
    • pp.1057-1077
    • /
    • 2010
  • An early detection of structural damages is critical for the decision making of repair and replacement maintenance in order to guarantee a specified structural reliability. Consequently, the structural damage detection, based on vibration data measured from the structural health monitoring (SHM) system, has received considerable attention recently. The traditional time-domain analysis techniques, such as the least square estimation (LSE) method and the extended Kalman filter (EKF) approach, require that all the external excitations (inputs) be available, which may not be the case for some SHM systems. Recently, these two approaches have been extended to cover the general case where some of the external excitations (inputs) are not measured, referred to as the adaptive LSE with unknown inputs (ALSE-UI) and the adaptive EKF with unknown inputs (AEKF-UI). Also, new analysis methods, referred to as the adaptive sequential non-linear least-square estimation with unknown inputs and unknown outputs (ASNLSE-UI-UO) and the adaptive quadratic sum-squares error with unknown inputs (AQSSE-UI), have been proposed for the damage tracking of structures when some of the acceleration responses are not measured and the external excitations are not available. In this paper, these newly proposed analysis methods will be compared in terms of accuracy, convergence and efficiency, for damage identification of structures based on experimental data obtained through a series of laboratory tests using a scaled 3-story building model with white noise excitations. The capability of the ALSE-UI, AEKF-UI, ASNLSE-UI-UO and AQSSE-UI approaches in tracking the structural damages will be demonstrated and compared.

MASS ESTIMATION OF IMPACTING OBJECTS AGAINST A STRUCTURE USING AN ARTIFICIAL NEURAL NETWORK WITHOUT CONSIDERATION OF BACKGROUND NOISE

  • Shin, Sung-Hwan;Park, Jin-Ho;Yoon, Doo-Byung;Choi, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.343-354
    • /
    • 2011
  • It is critically important to identify unexpected loose parts in a nuclear reactor pressure vessel, since they may collide with and cause damage to internal structures. Mass estimation can provide key information regarding the kind as well as the location of loose parts. This study proposes a mass estimation method based on an artificial neural network (ANN), which can overcome several unresolved issues involved in other conventional methods. In the ANN model, input parameters are the discrete cosine transform (DCT) coefficients of the auto-power spectrum density (APSD) of the measured impact acceleration signal. The performance of the proposed method is then evaluated through application to a large-sized plate and a 1/8-scaled mockup of a reactor pressure vessel. The results are compared with those obtained using a conventional method, the frequency ratio (FR) method. It is shown that the proposed method is capable of estimating the impact mass with 30% lower relative error than the FR method, thus improving the estimation performance.

Two-stage damage identification for bridge bearings based on sailfish optimization and element relative modal strain energy

  • Minshui Huang;Zhongzheng Ling;Chang Sun;Yongzhi Lei;Chunyan Xiang;Zihao Wan;Jianfeng Gu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.715-730
    • /
    • 2023
  • Broad studies have addressed the issue of structural element damage identification, however, rubber bearing, as a key component of load transmission between the superstructure and substructure, is essential to the operational safety of a bridge, which should be paid more attention to its health condition. However, regarding the limitations of the traditional bearing damage detection methods as well as few studies have been conducted on this topic, in this paper, inspired by the model updating-based structural damage identification, a two-stage bearing damage identification method has been proposed. In the first stage, we deduce a novel bearing damage localization indicator, called element relative MSE, to accurately determine the bearing damage location. In the second one, the prior knowledge of bearing damage localization is combined with sailfish optimization (SFO) to perform the bearing damage estimation. In order to validate the feasibility, a numerical example of a 5-span continuous beam is introduced, also the noise robustness has been investigated. Meanwhile, the effectiveness and engineering applicability are further verified based on an experimental simply supported beam and actual engineering of the I-40 Bridge. The obtained results are good, which indicate that the proposed method is not only suitable for simple structures but also can accurately locate the bearing damage site and identify its severity for complex structure. To summarize, the proposed method provides a good guideline for the issue of bridge bearing detection, which could be used to reduce the difficulty of the traditional bearing failure detection approach, further saving labor costs and economic expenses.

A Damage Assessment Technique for Bridges Using Static Displacements (정적변위를 이용한 교량의 손상도 평가기법)

  • Choi, Il Yoon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.641-646
    • /
    • 2002
  • A new damage detection technique using static displacement data was developed, in order to assess the structural integrity of bridge structures. In conventional damage assessment techniques using dynamic response, the variation of natural frequencies is intrinsically insensitive to the damage of the bridge: thus, it is usually difficult to obtain them from the measured data. The proposed detection method enables the estimation of the stiffness reduction of bridges using the static displacement data that are measured periodically, without requiring a specific loading test. Devices such as a laser displacement sensor can be used to measure static displacement data due to the dead load of the bridge structure. In this study, structural damage was represented by the reduction in the elastic modulus of the element. The damage factor of the element was introduced to estimate the stiffness reduction of the bridge under consideration. Likewise, the proposed algorithm was verified using various numerical simulations and compared with other damage detection methods. The effects of noise and number of damaged elements on damage detection were also investigated. Results showed that the proposed algorithm efficiently detects damage on the bridge.

Damage evaluation of seismic response of structure through time-frequency analysis technique

  • Chen, Wen-Hui;Hseuh, Wen;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.107-127
    • /
    • 2022
  • Structural health monitoring (SHM) has been related to damage identification with either operational loads or other environmental loading playing a significant complimentary role in terms of structural safety. In this study, a non-parametric method of time frequency analysis on the measurement is used to address the time-frequency representation for modal parameter estimation and system damage identification of structure. The method employs the wavelet decomposition of dynamic data by using the modified complex Morlet wavelet with variable central frequency (MCMW+VCF). Through detail discussion on the selection of model parameter in wavelet analysis, the method is applied to study the dynamic response of both steel structure and reinforced concrete frame under white noise excitation as well as earthquake excitation from shaking table test. Application of the method to building earthquake response measurement is also examined. It is shown that by using the spectrogram generated from MCMW+VCF method, with suitable selected model parameter, one can clearly identify the time-varying modal frequency of the reinforced concrete structure under earthquake excitation. Discussions on the advantages and disadvantages of the method through field experiments are also presented.

Structural Joint Damage Assessment Using Neural Networks (신경망을 이용한 구조물 접합부의 손상도 추정)

  • 방은영;이진학;윤정방
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.35-46
    • /
    • 1998
  • Structural damage is used to be modeled through reductions in the stiffness of structural elements for the purpose of damage estimation of structural system. In this study, the concept of joint damage is employed for more realistic damage assessment of a steel structure. The joint damage is estimated damage based on the mode shape informations using neural networks, The beam-to-column connection in a steel frame structure is represented by a rotational spring at the fixed end of a beam element. The severity of joint damage is defined as the reduction ratio of the connection stiffness with respect to the value of the intact joint. The concept of the substructural identification is used for the localized damage assessment in a large structure. The feasibility of the proposed method is examined using an example with simulated data. It has been found that the joint damages can be reasonably estimated for the case with the measurements of the mode vectors subjected to noise.

  • PDF

Deep learning approach to generate 3D civil infrastructure models using drone images

  • Kwon, Ji-Hye;Khudoyarov, Shekhroz;Kim, Namgyu;Heo, Jun-Haeng
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.501-511
    • /
    • 2022
  • Three-dimensional (3D) models have become crucial for improving civil infrastructure analysis, and they can be used for various purposes such as damage detection, risk estimation, resolving potential safety issues, alarm detection, and structural health monitoring. 3D point cloud data is used not only to make visual models but also to analyze the states of structures and to monitor them using semantic data. This study proposes automating the generation of high-quality 3D point cloud data and removing noise using deep learning algorithms. In this study, large-format aerial images of civilian infrastructure, such as cut slopes and dams, which were captured by drones, were used to develop a workflow for automatically generating a 3D point cloud model. Through image cropping, downscaling/upscaling, semantic segmentation, generation of segmentation masks, and implementation of region extraction algorithms, the generation of the point cloud was automated. Compared with the method wherein the point cloud model is generated from raw images, our method could effectively improve the quality of the model, remove noise, and reduce the processing time. The results showed that the size of the 3D point cloud model created using the proposed method was significantly reduced; the number of points was reduced by 20-50%, and distant points were recognized as noise. This method can be applied to the automatic generation of high-quality 3D point cloud models of civil infrastructures using aerial imagery.

Comparison of Assessment method of Blast Vibration (발파 진동 평가의 문제점과 개전방안)

  • Chang, Seo-Il;Lee, Jae-Won;Kim, Hyung-Kon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.553-558
    • /
    • 2002
  • The blast vibration can generate occupants dissatisfy as well as damage of physics nearby building. Then blast vibration estimation issue important problems. But, now blast vibration prediction inside-outside country not established objective method to express magnitude of vibration according to blast number. In this study, Our propose show our country problem of blast vibration about blast vibration measurement and this problems be able to find improve method.

  • PDF

Application Technique of PZT Patches to Estimation of Crack Location and Size in Structures (구조물 손상 위치 및 크기 평가를 위한 압전소자 응용기술)

  • Hong, Dong-Pyo;Hong, Yong;Wang, Gao-Ping;Han, Byeong-Hee;Hwang, Seung-Ho;Kim, Young-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.315-318
    • /
    • 2007
  • Non-Destructive Health Monitoring using PZT sensors is a major concern and has great significance for research about NDT (Non-Destructive Test). In this paper, we study about the guided wave measurement method using PZT sensors to find cracks and estimate locations. Two aluminum beams bonded with PZT sensors were tested for estimating about the guided wave propagation characteristics and shape of each beam are decided in terms of analytical purpose. NI Signal Acquisition Device and specially designed LabVIEW VI program were used for data acquisition and analysis. The measured data were progressed by using a high-pass filtering.

  • PDF