• Title/Summary/Keyword: estimation of noise damage

Search Result 60, Processing Time 0.024 seconds

Damage Estimation Method for Monopile Support Structure of Offshore Wind Turbine (모노파일 형식 해상풍력발전기 지지구조물의 손상추정기법)

  • Kim, Sang-Ryul;Lee, Jong-Won;Kim, Bong-Ki;Lee, Jun-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.667-675
    • /
    • 2012
  • A damage estimation method for support structure of offshore wind turbine using modal parameters is presented for effective structural health monitoring. Natural frequencies and mode shapes for a support structure with monopile of an offshore wind turbine were calculated considering soil condition and added mass. A neural network was learned based on training patterns generated by the changes of natural frequency and mode shape due to various damages. Natural frequencies and mode shapes for 10 prospective damage cases were input to the trained neural network for damage estimation. The identified damage locations and severities agreed reasonably well with the accurate damages. Multi-damage cases could also be successfully estimated. Enhancement of estimation result using another parameters as input to neural network will be carried out by further study. Proposed method could be applied to other type of support structure of offshore wind turbine for structural health monitoring.

Estimation of Fastened Condition of Bolts Using PZT Patches (압전소자를 이용한 볼트체결 상태계측 및 측정)

  • Chae, Kwan-Seok;Ha, Nam;Hong, Dong-Pyo;Chae, Hee-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.889-893
    • /
    • 2004
  • This work presents a study on development of a practical and quantitative technique for assessment of the structural health condition by piezoelectric impedance-based technique associated with longitudinal wave propagation method. The bolt fastening condition is adjusted by torque wrench. In order to estimate the damage condition numerically, three damage indices, impedance peak frequency shift ${\Delta}F$ is proposed in this paper. Furthermore, an assessment method is described for estimation of the damage by using these three damage indices.

  • PDF

Diagnosis and Non-contact Measurement of Bending Waves by Magnetosrictive Sensors (마그네토스트릭션 센서를 이용한 굽힘파의 비접촉 측정 및 이상 진단)

  • Kim, Ik-Kyu;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.630-635
    • /
    • 2002
  • This work is concerned with the damage size estimation by using propagating bending wave signals in a beam. For the accurate estimation, we apply the continuous wavelet transforms to the incident waves and the reflected waves from a small damage in a long cylindrical beam. In particular, we propose to use the ratio of the magnitude of the incident and reflected waves along the ridges in the wavelet-transformed time-frequency plane. This technique is applied to the signals measured by non-contact magnetostrictive sensors. Experimental results indicate that the present method using the magnetostrictive sensor can be quite effective for accurate damage size estimation with simple measurements.

  • PDF

Health Monitoring Method for Monopile Support Structure of Offshore Wind Turbine Using Committee of Neural Networks (군집 신경망기법을 이용한 해상풍력발전기 지지구조물의 건전성 모니터링 기법)

  • Lee, Jong Won;Kim, Sang Ryul;Kim, Bong Ki;Lee, Jun Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.347-355
    • /
    • 2013
  • A damage estimation method for monopile support structure of offshore wind turbine using modal properties and committee of neural networks is presented for effective structural health monitoring. An analytical model for a monopile support structure is established, and the natural frequencies, mode shapes, and mode shape slopes for the support structure are calculated considering soil condition and added mass. The input to the neural networks consists of the modal properties and the output is composed of the stiffness indices of the support structure. Multiple neural networks are constructed and each individual network is trained independently with different initial synaptic weights. Then, the estimated stiffness indices from different neural networks are averaged. Ten damage cases are estimated using the proposed method, and the identified damage locations and severities agree reasonably well with the exact values. The accuracy of the estimation can be improved by applying the committee of neural networks which is a statistical approach averaging the damage indices in the functional space.

Damage Size Estimation by the Continuous Wavelet Transform of Bending Wave Signals (굽힘파 신호의 연속 웨이블렛 변환을 이용한 결함 크기 평가)

  • Kim, Ik-Kyu;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.364.1-364
    • /
    • 2002
  • This work is concerned with the damage size estimation by using propagating bonging wave signals in a beam. To this end, we apply the continuous wavelet transforms to the incident waves and the reflected waves from a small damage in a long cylindrical beam. In particular, we propose to use the relative magnitudes of the two kinds of waves along the ridges in the wavelet transformed time-frequency planes. (omitted)

  • PDF

Damage Detection Using the Lipschitz Exponent Estimation by the Continuous Wavelet Transform : Applied to Vibration Mode Shapes in a Beam (연속웨이블렛 변환에 의한 립쉬츠 지수 평가를 이용한 결함 진단 : 보의 진동모드를 대상으로)

  • 홍진철;김윤영;이호철;이용욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1182-1188
    • /
    • 2001
  • The objective of this paper is to show the effectiveness of the wavelet transform by means of its capability to estimate the Lipschitz exponent. In particular, we show that the magnitude of the Lipschitz exponent can be used as a useful tool estimating the damage extent. An effective method based on the Lipschitz exponent is proposed and we present the results investigated both numerically and experimentally. The continuous wavelet transform by a Mexican hat wavelet having two vanishing moments is utilized for the estimation of the Lipschitz exponent.

  • PDF

Degradation Estimation Of Material by Barkhausen Noise Analysis (바크하우젠 노이즈 해석에 의한 재료의 열화도 평가)

  • Lee Myung Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.38-46
    • /
    • 2005
  • The destructive method is reliable and widely used for the estimation of material degradation but it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials used at high temperature by nondestructive evaluation such as electric resistance method, replica method, Barkhausen noise method, electro-chemical method and ultrasonic method are strongly desired. In this study, various nondestructive evaluation(NDE) parameters of the Barkhausen noise method, such as MPA(Maximum Peak Amplitude), RMS, IABNS(Internal Area of Barkhausen Noise on Signal) and average amplitude of frequency spectrum are investigated and correlated with thermal damage level of 2.25cr-1.0Mo steel using wavelet analysis. Those parameters tend to increase while thermal degradation proceeds. It also turns out that the wavelet technique can help to reduce experimental false call in data analysis.

Damage Detection of Cantiler-type Structure by using Modal Parameters (동특성을 이용한 켄틸레버형 구조물의 손상추정)

  • 천영수;김흥식;김하근;강경완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.494-497
    • /
    • 2001
  • Identification of damage of structures has recently received considerable attention in the light of maintenance and safety assessment. In this respect, the vibration characteristics of buildings have been applied steadily to obtain a damage index of the whole building, but it cannot be established as a practical method until now. A practical method for the estimation of structural damage using the first natural frequency and mode shape of building is proposed in this paper. The effectiveness of the proposed method is verified by numerical and experimental tests. From the results, it is observed that severity and location of damage can be estimated with a relatively small error by using modal properties of building.

  • PDF

Basic research for Health Monitoring Technique with PZT Patches (압전소자를 이용한 손상계측기술에 관한 기초연구)

  • Ha, Nam;Chae, Kwan-Suk;Hong, Dong-Pyo;Chae, Hee-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.870-874
    • /
    • 2004
  • This work presents a study on development of a practical and quantitative technique for assessment of the structural health condition by Piezoelectric impedance-based technique associated with longitudinal wave propagation method. The bolt fastening condition is adjusted by torque wrench. In order to estimate the damage condition numerically, three damage indices, impedance peak frequency shift ${\Delta}F$, peak amplitude ratio $\delta$ and quality factor ratio $\gamma$, are proposed in this paper. Furthermore, an assessment method is described for estimation of the damage by using these three damage indices.

  • PDF