• Title/Summary/Keyword: estimated natural frequency

Search Result 243, Processing Time 0.029 seconds

Damage Detection of Apartment Building- using Modal Properties (동특성을 이용한 벽식구조 아파트건물의 손상도 추정)

  • 천영수;김홍식;김하근;강경완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.577-582
    • /
    • 2001
  • Identification of damage of structures has recently received considerable attention in the light of maintenance and safety assessment under service loads. In buildings, the current techniques of safety assessment largely depend on partial experiments such as visual inspection, destructive and nondestructive tests which lead to overconsumption of time and cost as well as higher labor intensity. Therefore, a new trial for safety assessment is urgently needed today. In this respect, the vibration characteristics of buildings have been applied steadily to obtain a damage index of the whole building, but it cannot be established as a practical method until now. This study is aimed at investigating the application of damage identification methods using vibration characteristics of building. Numerical tests are performed on a apartment building. From the test results, it is observed that severity and location of damage can be estimated with a relatively small error by using natural frequency and mode shape data.

  • PDF

Accuracy of Capacity Spectrum Method for Building Structures (건축 구조물에 대한 능력스펙트럼법의 정확성 연구)

  • Min, Kyung-Won;Lee, Sang-Hyun;Park, Min-Kyu;Lee, Young-Chul;Jung, Ran
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.27-34
    • /
    • 2003
  • Capacity Spectrum Method (CSM) defined in ATC-40 or FEMA-273 is a most widely used static inelastic analysis method to evaluate the performance level of the existing structures. In CSM, however, uncertainties and errors exist when lateral forces such as earthquake and wind loads are analyzed into equivalent static loads. This paper examines the accuracy of CSM for different structural parameters, such as natural frequency, yield strength and hardening ratio, and various soil conditions by comparing the estimated values to exact solutions obtained by time history analysis. Results indicate that the accuracy of CSM, in general, is influenced mostly by hardening ratio.

  • PDF

An Analysis of Bending Behavior of Continuous P.S.C Girder Railway Bridge by Using Down-Up Method (주형의 하강ㆍ상승을 이용한 연속 P.S.C빔 철도교의 휨거동 해석)

  • 구민세;위영민;최인식
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.293-298
    • /
    • 2001
  • 2span continuous Prestressed concrete girder railway bridges, span length 21m, 25m, 30m, 35m, that down-up method is applied and that designed to satisfy service load in accordance with design criteria of railway bridge can be dropped in their hight compared with existing simply supported prestressed concrete girder railway bridges. Continuous bridges result in guaranteeing safety against bending behavior by loading the practical railway moving load with each velocity. But the natural frequency of span length 21m is estimated not to satisfy recommended limitation of UIC 776-1R..

  • PDF

Damage Detection of Cantiler-type Structure by using Modal Parameters (동특성을 이용한 켄틸레버형 구조물의 손상추정)

  • 천영수;김흥식;김하근;강경완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.494-497
    • /
    • 2001
  • Identification of damage of structures has recently received considerable attention in the light of maintenance and safety assessment. In this respect, the vibration characteristics of buildings have been applied steadily to obtain a damage index of the whole building, but it cannot be established as a practical method until now. A practical method for the estimation of structural damage using the first natural frequency and mode shape of building is proposed in this paper. The effectiveness of the proposed method is verified by numerical and experimental tests. From the results, it is observed that severity and location of damage can be estimated with a relatively small error by using modal properties of building.

  • PDF

Structural Optimization and Performance Evaluation of Ultra Precision Co-axial Ferrule Grinding Machining System (초미세 고기능 동축가공 연삭 시스템의 구조 최적화 및 특성 평가)

  • Ahn K.J.;Lee H.J.;Kim G.J.;Kim G.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.559-560
    • /
    • 2006
  • Fiber optic connector, ferrule, is a device to connect and align fiber optics cable on fiber-optic communication system. In general $ZrO_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. For the precision grinding machining, it is very important that structure of co-axial ferrule grinding system is optimized. In this paper, Structural analysis was performed to analyze bed and frame structure of co-axial grinding machine. Deformation and modal analysis for natural frequency was performed using ANSYS design space program to analyze structural characteristics. New improved model of bed and frame structure was proposed based on initial basic model. Therefore, we estimated the structural characteristics precision co-axial grinding machining system.

  • PDF

A Study on the Weight Reduction of the Steering Pump Bracket (스티어링 펌프 브라켓의 경량화에 관한 연구)

  • Kim, Wan-Du;Han, Seung-U
    • 연구논문집
    • /
    • s.28
    • /
    • pp.13-20
    • /
    • 1998
  • The power steering pump bracket for a passenger car which is mounted on the engine block plays a role to support the inertia forces of the pump and the reaction forces of the belt assembly. The existing bracket which is made of FCD material has some demerits such as heavy weight, lower productivity and lower reliability. Recently, AI alloy bracket has been investigated to overcome these demerits. In this study, Stress analysis and modal analysis for a existing FCD bracket and two type of AI alloy brackets were performed, and strength and natural frequency of them were estimated by using finite element method to accomplish the weight reduction. As a result, the modified shape of AI alloy bracket is proposed, and it has achieved the 45% weight reduction and the improvement of its strength and vibration characteristics.

  • PDF

Vibration Exciter Design for Flow Resonance (유동공진을 위한 가진기 설계)

  • Nam, Yoon-su;Choi, Jae-hyuck
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.125-130
    • /
    • 2000
  • Heat dissipation technology using flow resonant phenomenon is a kind of new concept in heat transfer area. A vibration exciter is needed to generate air turbulence which has the natural shedding frequency of heat system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator. An analytical dynamic model for this mechanical vibration exciter is presented and its validity is verified by the comparison with experimental data. Values of some unknown system parameters in the analytic model are estimated through the system identification approach. Based on this mathematical model, a high bandwidth vibration phase, it turns out the high modal resonant characteristics of vibrating plate are the major barrier against obtaining a high bandwidth vibration exciter.

  • PDF

NOISE ROBUST FORMANT FREQUENCY ESTIMATION BASED ON COMPLEX AUTOCORRELATION FUNCTION

  • Diankha, Ousmane;Shimamura, Tetsuya
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1799-1802
    • /
    • 2002
  • This paper proposes an improved method for formant frequencies estimation based on the complex autocorrelation function of the speech signal. Instead of using the incoming signal as an input fur the LPC analysis, the analytic signal of the autocorrelation function of the speech signal is computed and itself used as an input for the LPC analysis. Due to the properties of the analytic signal, which occupies half of the bandwidth of the original signal, the required model order for the LPC analysis is halved. The accuracy of the proposed method in noisy environments is examined on five natural vowels. The effectiveness of the proposed method is shown by the estimated spectral shapes and the estimation errors of the formant frequencies.

  • PDF

Constraining the Evolution of Epoch of Reionization by Deep-Learning the 21-cm Differential Brightness Temperature

  • Kwon, Yungi;Hong, Sungwook E.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.78.3-78.3
    • /
    • 2019
  • We develop a novel technique that can constrain the evolutionary track of the epoch of reionization (EoR) by applying the convolutional neural network (CNN) to the 21-cm differential brightness temperature. We use 21cmFAST, a fast semi-numerical cosmological 21-cm signal simulator, to produce mock 21-cm map between z=6-13. We design a CNN architecture that predicts the volume-averaged neutral hydrogen fraction from the given 21-cm map. The estimated neutral fraction has a good agreement with its truth value even after smoothing the 21-cm map with somewhat realistic choices of beam size and the frequency bandwidth of the Square Kilometre Array (SKA). Our technique could be further utilized to denoise the 21-cm map or constrain the properties of the radiation sources.

  • PDF

Modal testing and finite element model calibration of an arch type steel footbridge

  • Bayraktar, Alemdar;Altunisk, Ahmet Can;Sevim, Baris;Turker, Temel
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.487-502
    • /
    • 2007
  • In recent decades there has been a trend towards improved mechanical characteristics of materials used in footbridge construction. It has enabled engineers to design lighter, slender and more aesthetic structures. As a result of these construction trends, many footbridges have become more susceptible to vibrations when subjected to dynamic loads. In addition to this, some inherit modelling uncertainties related to a lack of information on the as-built structure, such as boundary conditions, material properties, and the effects of non-structural elements make difficult to evaluate modal properties of footbridges, analytically. For these purposes, modal testing of footbridges is used to rectify these problems after construction. This paper describes an arch type steel footbridge, its analytical modelling, modal testing and finite element model calibration. A modern steel footbridge which has arch type structural system and located on the Karadeniz coast road in Trabzon, Turkey is selected as an application. An analytical modal analysis is performed on the developed 3D finite element model of footbridge to provide the analytical frequencies and mode shapes. The field ambient vibration tests on the footbridge deck under natural excitation such as human walking and traffic loads are conducted. The output-only modal parameter identification is carried out by using the peak picking of the average normalized power spectral densities in the frequency domain and stochastic subspace identification in the time domain, and dynamic characteristics such as natural frequencies mode shapes and damping ratios are determined. The finite element model of footbridge is calibrated to minimize the differences between analytically and experimentally estimated modal properties by changing some uncertain modelling parameters such as material properties. At the end of the study, maximum differences in the natural frequencies are reduced from 22% to only %5 and good agreement is found between analytical and experimental dynamic characteristics such as natural frequencies, mode shapes by model calibration.