• 제목/요약/키워드: esterification rate

검색결과 65건 처리시간 0.024초

부틸 아세테이트 생산을 위한 외부 공비제 첨가 반응증류: 파일럿 규모 실험을 통한 연구 (Entrainer Enhanced Reactive Distillation for Production of Butyl Acetate: Experimental Investigation in Pilot-Scale)

  • 양정인;임홍규;임성규;백가영;한명완
    • Korean Chemical Engineering Research
    • /
    • 제54권5호
    • /
    • pp.698-705
    • /
    • 2016
  • 부틸 아세테이트는 반응증류탑에서 초산과 부탄올의 에스테르 교환반응에 의해 제조된다. 기존의 반응증류 공정은 생성물인 부틸 아세테이트가 내부 공비첨가제로 사용되는데, 이 경우 부틸 아세테이트가 물과 함께 탑상으로 제거된 후 상 분리를 거쳐 반응증류탑으로 환류된다. 이는 생성물인 부틸 아세테이트가 반응영역에 많이 분포하게 하여 반응의 평형 전환율이 낮아지고 이에 따라 생성물의 수율이 저하되는 단점이 있다. 이러한 문제를 외부 공비첨가제를 사용하여 해결하였다. 외부 공비첨가제는 물과 새로운 공비를 형성하여 기존 공정에 비해 탑의 반응영역에서 부틸 아세테이트의 농도를 낮게한다. 본 연구에서는 싸이클로헥산을 외부 공비첨가제로 사용하였을 때와 내부 공비첨가제를 사용하였을 때 부틸 아세테이트의 수율과 생성 속도를 실험과 모사를 통하여 비교하였다. 이를 위하여 파일럿 규모의 반응증류탑으로 실험을 진행하였으며, 실험 및 모사 결과를 통하여 외부 공비첨가제를 사용한 공정이 내부 공비첨가제를 사용한 경우보다 같은 에너지에서 보다 높은 부틸 아세테이트 수율을 나타냄을 보였다.

토양 침투수중 MCPP의 유도체화 및 잔류분석 (Derivatization and Residual Determination of MCPP in Soil Leachate)

  • 홍무기;알버트스미스
    • 한국환경농학회지
    • /
    • 제13권2호
    • /
    • pp.199-208
    • /
    • 1994
  • 토양 침투수중에 잔류하는 제초제 MCPP를 추출, 유도체를 합성하여 GC-MS로 확인하고 capillary GC-ECD로 잔류분석하였다. Diazomethane과 $BF_3$/MeOH 등을 이용하여 합성한 MCPP의 methyl 유도체, 황산을 촉매로 이용하여 합성한 MCPP의 2,2,2-trifluoroethyl(TFE) 및 2,2,2-trichloroethyl(TCE) 유도체, 그리고 MCPP의 pentafluorobenzyl(PFB) 유도체간의 잔류분석법을 비교한 결과 이 연구에서 개발된 MCPP-TFE 유도체화가 간편하고 신속, 안전한 유도체화 기술로서 GC-ECD에서 비교적 감도가 우수한 편이었다. MCPP의 methyl 유도체는 GC-ECD에서 그 감도가 너무 낮아 시료가 소량인 경우 ppb 수준의 잔류분석이 불가능하였고 MCPP-TCE 및 MCPP-PFB 유도체는 그 감도는 우수하였으나 크로마토그람상의 방해물질이 많아 액액분리에 의한 정제만으로는 잔류분석이 곤란하였다. MCPP-TFE 유도체화에 의하면 토양침투수 100ml중 $0.1{\mu}g$ 미만의 농도를 가진 MCPP의 잔류분석이 액액분리에 의한 정제만으로 가능하였다.

  • PDF

유기용매 내에서의 유지의 리파제 촉매반응 (Lipase-Catalyzed Reactions for Fats and Oils in Non-Polar Solvent)

  • Daeseok Han;Kwon, Dae-Young;Rhee, Joon-Shick
    • 한국미생물·생명공학회지
    • /
    • 제16권3호
    • /
    • pp.250-258
    • /
    • 1988
  • 리파제는 모노, 디, 트리글리세리드 분자 내의 에스테르 결합을 가수분해 시키는 효소로 잘 알려져 있다. 그런데, 이 효소의 기질인 유지는 물에 용해되지 않아 그 반응이 불균일계에서 일어남으로 리파제 반응의 반응속도론적 해석이 곤란하였다. 이러한 성질은 유지공업에서 리파제를 산업적 촉매로 사용하는데 커다란 장해 요인이 되었었다. 그러나, 최근에 이상계, 역미셀계, 미수계와 같이 반응매질로 유기용매를 도입한 효소반응계가 개발됨에 따라 리파제를 이용한 유지의 전환에 대한 관심이 집중하는 추세에 있다. 리파제를 사용하여 유지를 가수분해시킴으로써 지방간을 생산하고자 할 때 효소반응계로 재래식의 에멀젼보다 이상계 또는 역미셀계를 사용하면 생산성, 굳기름의 가수분해 속도, 생성물 분리등의 측면에서 전체 공정의 효율이 향상될 수 있었다. 한편, 미수계에서 리파제는 에멀젼에서는 불가능한 에스테르 교환반응, 글리세리드 합성, aminolysis, thiotransesterification 및 oximolysis 같은 반응을 촉매 할 수 있는 획기적인 특성을 나타냈다. 공업적 측면에서 이 반응계는 물리적 또는 화학적 특성 (특히 융점)이 변형된 유지를 생산하고자 하는 에스테르 교환반응의 효소반응계로 널리 이용되고 있다. 앞으로 유기용매 내에서 효소의 안정성을 확보할 수 있는 수단 및 연속조작이 가능한 효소반응기의 개발에 관한 연구가 계속된다면 이러한 효소공정이 공업적 제조기술로 발전될 수 있을 것이다.

  • PDF

(感光性 高分子에 關한 硏究 VII) Cinnamoylated Polymers의 光增感 硬化反應機構 ((Photosensitive Polymers VII) Mechanism of Photosensitized Curing Reaction of Cinnamoylated Polymers)

  • 김광섭;심정섭
    • 대한화학회지
    • /
    • 제10권4호
    • /
    • pp.166-174
    • /
    • 1966
  • cinnamoylated photosensitive polymer의 광증감 경화반응기구를 반응속도론적으로 연구했다. Cinnamic acid(C)와 증감제(S)의 first excited singlet and lowest triplet energy level diagram과 증감제의 농도증가에 따른 sensitivity의 포화 등의 사실로부터 이 반응의 주요과정은 C와 S의 광 energy흡수에 의한 $C^{*(1)}$$S^{*(1)}$로의 여기, $S^{*(1)}{\to}S^{*(3)}$ intersystem crossing, S의 excimer 형성, $S^{*(3)}{\to}C^{*(3)}$ energy transfer 그리고 $C^{*(3)}$와 C의 termination 등임을 가정하고 다음 반응속도를 구했다. $-\frac{d[C]}{dt} = \frac{K_1[C]}{K_2 + [C]}[\frac{I^c_{abs}}{K_3 + [S]} + \frac{K_4[C]}{(K_5 + [C])(K_6 + [S])}(I^s_{abs} + \frac{K_7I^c_{abs}[S]}{K_8 + [S]})]$ $I^c_{abs}$$I^s_{abs}$ ;C 및 S의 광흡수율 $K_n$;상수 적외선 흡수스펙트럼 분석의 결과, Cinnamoyl 에스테르화도와 sensitivity의 관계 및 증감제의 농도와 sensitivity의 관계에 대하여 발표된 실험 data는 윗식을 만족시키므로 가정한 반응기구에 대한 뒷받침을 얻었다.

  • PDF

디옥틸테레프탈산 제조공정에서 분진폭발 특성에 관한 연구 (Characteristics of Dust Explosion in Dioctyl Terephthalic Acid Manufacturing Process)

  • 이창진;김래현
    • Korean Chemical Engineering Research
    • /
    • 제57권6호
    • /
    • pp.790-803
    • /
    • 2019
  • 디옥틸테레프탈산(DOTP) 제조공정은 분말형태의 테레프탈산(PTA) 주원료와 옥탄올(Octanol)의 에스테르화 반응을 통해 플라스틱 가소제를 생산하는 공정이다. 본 연구에서는 이 공정의 반응기 내에 가연성 용제나 유증기가 존재하고 있는 상태에서 분말형태로 맨홀에 직접 투입하는 테레프탈산의 분진폭발 특성에 관하여 고찰하였다. 분진의 입경과 입도분포 분진특성 실험을 하였고, 화재 폭발특성과 발화온도를 추정하기 위한 분진의 열분해 특성을 조사하였다. 또한 폭발민감도를 평가하기 위한 최소점화에너지 실험을 실시하였다. 실험결과 테레프탈산의 분체 특성은 평균입경이 $143.433{\mu}m$으로 나타났다. 이러한 입경과 입도분포 조건에서 실시한 열분석으로부터 분진의 발화온도는 약 $253^{\circ}C$로 나타났다. 테레프탈산의 폭발민감도를 알기 위해 조사한 폭발하한 농도(LEL)는 $50g/m^3$으로 측정되었다. 폭발민감도를 나타내는 최소점화에너지(MIE)는 (10 < MIE < 300) mJ로 나타났으며, 점화 확률에 기반하여 추산한 최소점화에너지 추정값(Es)은 210 mJ로서 충분한 점화원이 있는 경우 폭발할 수 있음을 알 수 있었다. 또한 폭발피해 예측에 필요한 폭발강도 특성을 조사한 결과, 테레프탈산 분진의 최대폭발압력($P_{max}$), 최대폭발압력상승속도[$({\frac{dP}{dt}})_{max}$]는 각각 7.1 bar, 511 bar/s로 나타났다. 분진폭발지수(Kst)는 139 mbar/s로 분진폭발등급 St 1에 해당되는 것으로 나타났다.