• Title/Summary/Keyword: essential oil components

Search Result 289, Processing Time 0.028 seconds

Essential Oil Composition of Umbelliferous Herbs (미나리과 허브식물의 향기성분)

  • 홍철운;김명곤;김철생;김남균
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • The volatile components of umbelliferous herbs having a characteristic spicy aroma were investigated. The essential oils of herbs were isolated by simultaneous steam distillation and extraction and the volatile components were identified by capillary GC and GC/MS. Forty-nine volatile compounds were identified from the herbs. The major compounds of chervil (Anthricus cerefolium) leaf oil were methyl chavicol, 1-allyl-2,4-dimethoxy benzene, and of coriander (Coriandrum sativum) leaf oil were ${\beta}$-sesquiphellan drene, germacrene B, nerolidol, selinene-4-ol, and of coriander seed oil were linalool, decanal, ${\gamma}$-terpinene, $\rho$-cymene.

  • PDF

Effects of Plant Essential Oils on Physiological Changes

  • Cho Sin Won
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.333-343
    • /
    • 2024
  • This study aimed to investigate whether inhaling the aroma of essential oils could alleviate physiological stress responses and mimic the effects of forest therapy in urban settings. Briefly, 31 participants underwent stress index assessments for two days and inhaled the selected plant essential oils. The effects of this treatment on physiological responses were determined through electroencephalogram (EEG) and heart rate variability (HRV) measurements taken before and after inhaling the aroma of essential oils, extracting results for low frequency (LF) and high frequency (HF) components of HRV, as well as 𝜃 and 𝛼 brainwave activities. The results indicated that lavender oil did not yield significant differences, whereas pine, chamomile, and cypress oils exhibited significant differences in effects. Overall, stress relief was associated with enhanced 𝜃 and 𝛼 brainwave activities, a decrease in the LF component and an increase in the HF component of HRV. Among the essential oils studied, pine oil was the most effective. These findings underscore the potential of plant essential oils in replicating the therapeutic benefits of forest therapy, even in urban environments. Further investigations into their utilization are warranted to better understand and harness their therapeutic potential.

Antimicrobial Activity of Some Essential Oils Against Microorganisms Deteriorating Fruit Juices

  • Helal G.A.;Sarhan M.M.;Shahla A.N.K. Abu;El-Khair E.K. Abou
    • Mycobiology
    • /
    • v.34 no.4
    • /
    • pp.219-229
    • /
    • 2006
  • Seventeen microbial species including 10 fungal taxa, two yeasts and five bacteria, were isolated from freshly prepared orange, guava and banana juices kept in open bottles at room temperature for 7 days. Eight different essential oils, from local herbs, were tested for their antimicrobial activity against these test organisms. The essential oils of Cymbopogon citratus, Ocimum basilicum and Origanum majorana were found to be highly effective against these microorganisms. Aspergillus niger, A. flavus and Saccharomyces cerevisiae, the most prevalent microorganisms in juice, showed the highest resistance against these essential oils. GC-MS analysis showed that while e-citral, a'-myrcene, and z-citral represent the major components (75.1 %) of the essential oil of Cymbopogon citratus; bezynen,l-methyl-4-(2-propenyl), 1,8-cineole and trans-a'-bisabolene were the main components (90.6%) of Ocimum basilicum; whereas 3-cyclohexen-l-0l,4-methyl-l(l-methylethyl)-(CAS), c-terpinene and trans-caryophyllene represent the major components (65.1%) of Origanum majorana. These three essential oils were introduced into juices by two techniques namely, fumigation and direct contact. The former technique showed more fungicidal effect than the latter one against A. flavus, A. niger, and S. cerevisiae. The essential oil of Cymbopogon citratus by comparison to other test oils showed the strongest effect against these fungi with a minimum inhibitory concentration of $1.5\;{\mu}l/ml$ medium and a sublethal concentration of $1.0\;{\mu}l/ml$. The antimicrobial activity of this oil is thermostable at $121^{\circ}C$ for 30 min.

The Variation of the Major Compounds of Artemisia princeps var. orientalis (Pampan) Hara Essential Oil by Harvest Year (수확 연도에 따른 쑥 정유의 주요 화합물 함량 변화)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.4
    • /
    • pp.533-543
    • /
    • 2015
  • This study investigated the chemical composition of Artemisia princeps var. orientalis (Pampan) Hara (ssuk in Korea) essential oil and the quantitative changes of major terpene compounds according to the time of harvest. The essential oils obtained by hydrodistillation extraction from the aerial parts of ssuk were analyzed by GC and GC-MS. The essential oil composition of ssuk was characterized by higher contents of mono- and sesqui- terpene compounds. Ninety-nine volatile flavor compounds were identified in the essential oil from ssuk harvested in 2010, with camphor (11.9%), ${\beta}-caryophyllene$ (9.11%), dehydrocarveol (8.51%), and borneol (7.72%) being the most abundant compounds. Eighty-three compounds were identified in the essential oil from the plant harvested in 2011, with borneol (12.36%), caryophyllene oxide (12.29%), ${\beta}-caryophyllene$ (10.24%), camphor (9.13%), and thujone (8.4%) being the most abundant compounds. Eighty-four compounds were identified in the essential oil from the plant harvested in 2012, with ${\beta}-caryophyllene$ (20.25%), caryophyllene oxide (14.63%), and thujone (11.55%) being the major compounds. Eighty-nine compounds were identified in the essential oil from the plant harvested in 2013, with thujone (23.11%), alloaromadendrene oxide (12.3%), and ${\beta}-caryophyllene$ (11.48%) being the most abundant compounds. Thujone and aromadendrene oxide contents increased significantly from 2010 to 2013, while camphor and dehydrocarveol contents decreased significantly during those 4 years. The quantitative changes in these 4 compounds according to the time of harvest can served as a quality index for ssuk essential oil. The ecological responses to recent climate changes may be reflected in the chemical components of natural plant essential oils.

Analysis of Aroma Components by Part of Allium Hookeri and Research on Antioxidant and Anti-inflammatory (삼채잎 향기 성분 분석과 항산화 및 항염 효과 연구)

  • Shin, Min Chul;Jeong, Sook Heui
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.263-270
    • /
    • 2021
  • Allium Hookeri is a plant of the genus Allium, and prior research has been conducted on antioxidant, anti-inflammatory and antibacterial, but studies on essential oil extraction are insufficient. Therefore, in this study, GC-MSD was performed by extracting essential oils for Allium Hookeri leaves, roots, and whole parts. The cytotoxicity, antioxidant, and anti-inflammatory properties of Allium Hookeri leaves were confirmed to confirm their potential as a cosmetic material. The yield of essential oil extraction from Allium Hookeri leaves, roots and whole parts was found to be 0.01, 0.02, 0.01%. As a result of analyzing the aroma components of GC-MSD, the main components of essential oil of Allium Hookeri leaves were Diallyl trisulfide (34.02%) and Methyl allyl trisulfide (25.14%). At a concentration of 10%, where cytotoxicity was not confirmed, 39.69% inhibition of NO production and 88.26% of DPPH radical scavenging activity were shown. Through this, the Allium Hookeri essential oil presents the possibility of being useful as a raw material with antioxidant and anti-inflammatory effects in cosmetics.

Production of Essential Oils by Cell Culture of Codonopsis lanceolata (세포배양에 의한 더덕 정유의 생산)

  • Shin, Seung-Won;Choi, Eun-Jung
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.2
    • /
    • pp.164-167
    • /
    • 1995
  • The essential oils from the roots of Codonopsis lanceolata and the cultivated callus were analysed and compared by gaschromatography-mass spectrometry. In the experimental study of cell culture, it appeared that 2,4-dichlorophenoxy acetic acid in the culture medium induced higher production of essential oils in the callus than indole acetic acid. The growth of callus was inhibited by illumination of the light. The production of essential oil in cultured cells was increased by the addition of biosynthetic precursors. The essential oils from the roots of Codonopsis lanceolata and the cultured callus showed different compositions. Tetradecanoic acid, 1,1,-dimethoxyl 4-methoxy phenol, 9,12-octadecanoic acid and hexadecanoic acid were identified as main components of the cultured callus oil.

  • PDF

Constituents of the Essential Oil from Eclipta prostrata L.

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.2
    • /
    • pp.168-171
    • /
    • 2009
  • The volatile aroma constituents of Eclipta prostrata L. (leaves, stems, and flowers) were isolated by hydro-distillation extraction method and analyzed by GC/MS. The yield of Eclipta prostrata L. essential oil was 0.1% (v/w), and its color was yellow. Sixty-eight volatile flavor compounds, which make up 71.15% of the total volatile composition of the essential oil were tentatively characterized. It contained 35 hydrocarbons (56.25%) with sesquiterpene predominating, 12 alcohols (3.05%), 8 ketones (3.83%), 9 aldehydes (1.86%), 2 oxides (6.03%), and 2 esters (0.13%). ${\alpha}$-Humulene, 6,9-heptadecadiene, (E)-${\beta}$-farnesene, and ${\alpha}$-phellandrene were the major abundant aroma components in Eclipta prostrata L., aromatic and medicinal plant.

Anti-inflammatory Activities of Chopi (Zanthoxylum piperitum A.P. DC) Essential Oil: Suppression of the Inducible Nitric Oxide Synthase and Cellular Adhesion

  • Lee, Je-Hyuk;Chang, Kyung-Mi;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1371-1378
    • /
    • 2009
  • The aim of this study is to elucidate the anti-inflammatory activities of chopi (Zanthoxylum piperitum A.P. DC.) essential oil. Essential oil (EO) of chopi was extracted by steam distillation method, and its major constituents were limonene and geranyl acetate. Chopi-EO decreased approximately 38% of nitrite production, as compared to the lipopolysaccharde (LPS)-induced nitrite production. However, chopi-EO and its components did not quench nitric oxide (NO) chemically in cellfree system, and markedly inhibited approximately 40.4% of inducible nitric oxide synthase (iNOS) mRNA transcription. In addition, the inhibition of E-selectin gene transcription by chopi-EO caused the suppression of cellular adhesion. These results suggest that chopi-EO may exert potential anti-immunological inflammatory activity.

Evaluation on Anti-Dermatophyte Effect of Larix (kaempferi) Essential Oil on the Morphological Changes of Eermatophyte Fungal Hyphae (피부사상균 균사의 형태학적 변화를 통한 일본잎갈나무 정유의 항진균 활성 효과 구명)

  • Kim, Seon-Hong;Lee, Su-Yeon;Hong, Chang-Young;Jang, Soo-Kyeong;Lee, Sung Suk;Park, Mi-Jin;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.247-257
    • /
    • 2013
  • This study was to investigate the antifungal activity of Larix kaempferi essential oil against dermatophytes, Epidermophyton floccosum, Trichophyton mentagrophytes and Trichophyton rubrum. The active components of L. kaempferi against dermatophytes were determined (characterized by GC-MS), and the morphological changes of the dermatophytes exposed to the L. kaempferi essential oil were observed by electron microscope. Main component of L. kaempferi essential oil was (-)-bornyl acetate. In antifungal activity tests, MIC of L. kaempferi crude oil was 125 ppm on every fungi and 100% (agar dilution method) at more than 500 ppm. By using SEM and TEM, the fungal morphology of E. floccosum exposed to the L. kaempferi essential oil was different from that of normal hyphal morphology. Hyphae exposed to the L. kaempferi essential oil was damaged with distorted and collapsed surfaces. In addition, there were destruction and disorganization of organelles in cytoplasm and collapse of cell membrane. Active antifungal components from L. kaempferi essential oil were identified as terpene alcohol compounds like (-)-${\tau}$-muurolol, (+)-terpinen-4-ol, ${\alpha}$-terpineol, and ${\alpha}$-cadinol.

Analysis of Essential Oil Components using Elsholtzia splendense Nakai, a Fragrant Plant Distributed in Korea (자생 방향성 식물 꽃향유의 정유성분 분석)

  • Jung, J.H.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.5-12
    • /
    • 2021
  • In order to extract the essential oil contained in the Elsholtzia splendense Nakai, a fully-bloomed individual was collected and the living body was used for the experiment. Plants were divided into 0.7kg of flowers and 1.5kg of leaves + stems, and extracted by parts and used for scent pattern analysis, and extracted after adding 5kg of outpost for the analysis of essential oil components. Essential oil extraction was performed using the SDE method improved by Schultz et al. (1977), and the extraction time was limited to 1 hour after the material started boiling. The extracted essential oil component was analyzed for fragrance pattern analysis using an e-nose, and the results of analyzing the substance of the essential oil component by GC-MS are as follows. 1. As for the fragrance pattern analysis, in the case of essential oils extracted from flowers, the scent quality was the best at 10-20 minutes, and the scents extracted from stems and leaves were somewhat of poor scent quality, but the fragrance was good at 10-40 minutes. The intensity of scent was the strongest in 10-20 minutes, and the intensity of incense was high even in 30-40 minutes. The scent extracted from the stems and leaves was generally not strong, but appeared high in 10 to 20 minutes. 2. There were 40 kinds of essential oils contained in Elsholtzia splendense Nakai oil. Among them, Mequinol, Benzene, 1,2,3,4-tetramethyl, Elsholtziaketone, and Dehydroelsholtziaketone were identified.