• Title/Summary/Keyword: essential matrix

Search Result 326, Processing Time 0.028 seconds

A comparative study between sterile freeze-dried and sterile pre-hydrated acellular dermal matrix in tissue expander/implant breast reconstruction

  • Cheon, Jeong Hyun;Yoon, Eul Sik;Kim, Jin Woo;Park, Seung Ha;Lee, Byung Il
    • Archives of Plastic Surgery
    • /
    • v.46 no.3
    • /
    • pp.204-213
    • /
    • 2019
  • Background In implant-based breast reconstruction, acellular dermal matrix (ADM) is essential for supporting the inferolateral pole. Recent studies have compared non-sterilized freeze-dried ADM and sterilized pre-hydrated ADM, but have not assessed whether differences were attributable to factors related to sterile processing or packaging. This study was conducted to compare the clinical outcomes of breast reconstruction using two types of sterile-processed ADMs. Methods Through a retrospective chart review, we analyzed 77 consecutive patients (85 breasts) who underwent tissue expander/implant breast reconstruction with either freeze-dried ADM (35 breasts) or pre-hydrated ADM (50 breasts) from March 2016 to February 2018. Demographic variables, postoperative outcomes, and operative parameters were compared between freeze-dried and pre-hydrated ADM. Biopsy specimens were obtained for histologic analysis. Results We obtained results after adjusting for variables found to be significant in univariate analyses. The total complication rate for freeze-dried and pre-hydrated ADMs was 25.7% and 22.0%, respectively. Skin necrosis was significantly more frequent in the freeze-dried group than in the pre-hydrated group (8.6% vs. 4.0%, P=0.038). All other complications and operative parameters showed no significant differences. In the histologic analysis, collagen density, inflammation, and vascularity were higher in the pre-hydrated ADM group (P=0.042, P=0.006, P=0.005, respectively). Conclusions There are limited data comparing the outcomes of tissue expander/implant breast reconstruction using two types of sterile-processed ADMs. In this study, we found that using pre-hydrated ADM resulted in less skin necrosis and better integration into host tissue. Pre-hydrated ADM may therefore be preferable to freeze-dried ADM in terms of convenience and safety.

High Expression of KIFC1 in Glioma Correlates with Poor Prognosis

  • Pengfei Xue;Juan Zheng;Rongrong Li;Lili Yan;Zhaohao Wang;Qingbin Jia;Lianqun Zhang;Xin Li
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.3
    • /
    • pp.364-375
    • /
    • 2024
  • Objective : Kinesin family member C1 (KIFC1), a non-essential kinesin-like motor protein, has been found to serve a crucial role in supernumerary centrosome clustering and the progression of several human cancer types. However, the role of KIFC1 in glioma has been rarely reported. Thus, the present study aimed to investigate the role of KIFC1 in glioma progression. Methods : Online bioinformatics analysis was performed to determine the association between KIFC1 expression and clinical outcomes in glioma. Immunohistochemical staining was conducted to analyze the expression levels of KIFC1 in glioma and normal brain tissues. Furthermore, KIFC1 expression was knocked in the glioma cell lines, U251 and U87MG, and the functional roles of KIFC1 in cell proliferation, invasion and migration were analyzed using cell multiplication, wound healing and Transwell invasion assays, respectively. The autophagic flux and expression levels matrix metalloproteinase-2 (MMP2) were also determined using imaging flow cytometry, western blotting and a gelation zymography assay. Results : The results revealed that KIFC1 expression levels were significantly upregulated in glioma tissues compared with normal brain tissues, and the expression levels were positively associated with tumor grade. Patients with glioma with low KIFC1 expression levels had a more favorable prognosis compared with patients with high KIFC1 expression levels. In vitro, KIFC1 knockdown not only inhibited the proliferation, migration and invasion of glioma cells, but also increased the autophagic flux and downregulated the expression levels of MMP2. Conclusion : Upregulation of KIFC1 expression may promote glioma progression and KIFC1 may serve as a potential prognostic biomarker and possible therapeutic target for glioma.

Physicochemical Properties of Domestic Cherry Tomato Varieties (국내산 방울토마토의 이화학적 특성)

  • Ahn, Jun-Bae
    • Culinary science and hospitality research
    • /
    • v.23 no.7
    • /
    • pp.42-49
    • /
    • 2017
  • This study was conducted to determine the nutritional value of domestic cherry tomato varieties (Summerking, Qutiquti, and Minichal). The levels of amino acids, amino acid derivatives, and ${\gamma}-aminobutyric-acid$ (GABA) were analyzed using ion chromatography. In domestic cherry tomatoes, eighteen free amino acids were found including L-glutamic acid (L-Glu), L-glutamine (L-Gln), and L-aspartic acid (L-Asp). L-Glu was the most abundant amino acid, ranging from 1,533.17 mg/100 g to 1,920.65 mg/100 g (dry weight). The next abundant amino acids were L-Gln, ranging from 784.68 mg/100 g to 1,164.36 mg/100 g and L-Asp, ranging from 320.73 mg/100 g to 387.22 mg/100 g. Domestic cherry tomatoes contained eight essential amino acids except tryptophan and the total essential amino acid content was 297.30~432.43 mg/100 g (dry weight), which was 8.92~10.61% of total free amino acid. Several amino acid derivatives were found: L-carnitine (L-Car), hydroxylysine (Hyl), o-phosphoethanolamine (o-Pea), phosphoserine (p-Ser), ${\beta}-alanine$ (${\beta}-Ala$), N-methyl-histidine (Me-His), ethanolamine ($EtNH_2$), and L-citrulline (L-Cit). L-Car, transporting long-chain fatty acid into mitocondrial matrix, was the most abundant amino acid derivative in all domestic cherry tomatoes. A high level of GABA (313.18~638.57 mg/100 g), known as a neurotransmitter, was also found in all three domestic cherry tomatoes. These results revealed that domestic cherry tomatoes have a good balance of nutrient and bioactive compounds. Therefore, cherry tomatoes can be used as a functional food material.

Calibration of Omnidirectional Camera by Considering Inlier Distribution (인라이어 분포를 이용한 전방향 카메라의 보정)

  • Hong, Hyun-Ki;Hwang, Yong-Ho
    • Journal of Korea Game Society
    • /
    • v.7 no.4
    • /
    • pp.63-70
    • /
    • 2007
  • Since the fisheye lens has a wide field of view, it can capture the scene and illumination from all directions from far less number of omnidirectional images. Due to these advantages of the omnidirectional camera, it is widely used in surveillance and reconstruction of 3D structure of the scene In this paper, we present a new self-calibration algorithm of omnidirectional camera from uncalibrated images by considering the inlier distribution. First, one parametric non-linear projection model of omnidirectional camera is estimated with the known rotation and translation parameters. After deriving projection model, we can compute an essential matrix of the camera with unknown motions, and then determine the camera information: rotation and translations. The standard deviations are used as a quantitative measure to select a proper inlier set. The experimental results showed that we can achieve a precise estimation of the omnidirectional camera model and extrinsic parameters including rotation and translation.

  • PDF

Fabrication and Mechanical Properties of Carbon Fiber Reinforced Polymer Composites with Functionalized Graphene Nanoplatelets (기능기화 된 그래핀 나노플레이틀릿이 첨가 된 탄소섬유 강화 고분자 복합소재의 제조 및 기계적 특성 연구)

  • Cha, Jaemin;Kim, Jun Hui;Ryu, Ho Jin;Hong, Soon H.
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.316-322
    • /
    • 2017
  • Carbon fiber is a material with excellent mechanical, electrical and thermal properties, which is widely used as a composite material made of a polymer matrix. However, this composite material has a weak point of interlaminar delamination due to weak interfacial bond with polymer matrix compared with high strength and elasticity of carbon fiber. In order to solve this problem, it is essential to use reinforcements. Due to excellent mechanical properties, graphene have been expected to have large improvement in physical properties as a reinforcing material. However, the aggregation of graphene and the weak interfacial bonding have resulted in failure to properly implement reinforcement effect. In order to solve this problems, dispersibility will be improved. In this study, functionalization of graphene nanoplatelet was proceeded with melamine and mixed with epoxy polymer matrix. The carbon fiber reinforced polymer composites were fabricated using the prepared graphene nanoplatelet/epoxy and flexural properties and interlaminar shear strength were measured. As a result, it was confirmed that the dispersibility of graphene nanoplatelet was improved and the mechanical properties of the composite material were increased.

Coculture of Bovine Chondrocytes with Demineralized Bone Matrix in Alginate Bead and Pellet Cultures (알긴산 배양과 펠렛 배양에서 소연골세포와 탈회골기질의 공배양)

  • Sutradhar, Bibek Chandra;Hong, Gyeong-Mi;Park, Jin-Uk;Choi, Seok-Hwa;Kim, Gon-Hyung
    • Journal of Veterinary Clinics
    • /
    • v.27 no.2
    • /
    • pp.147-153
    • /
    • 2010
  • Bio-integration of cartilage grafts with subchondral bone is a significant clinical challenge. To date, the use of demineralized bone matrix (DBM) has been one of the most effective strategies for bone cell proliferation in vivo. Here, we investigated whether coculture of chondrocytes and DBM could serve as a single-platform system containing all the essential elements for purposive bone and cartilage induction. The aim of this study was to evaluate and compare the phenotype and proliferation of bovine chondrocytes cocultured with DBM in two different culture systems, pellet and alginate bead culture. In alginate bead culture, we observed an increase in chondrocyte number and formation of cell clusters. Typical chondrocytic phenotype was maintained for entire eight weeks. Histological analysis showed that chondrocytes maintained a typical round, plump morphology and there was a gradual increase in lacunae. Both coculture systems yielded an expanded cell population as compared to the controls (chondrocytes alone). The production of glycosaminoglycans was also increased in the coculture systems as compared to controls.

The Effects of Platelet- Derived Growth Factor-BB on the Expression of Bone Matrix Protein in the MC3T3-E1 Cells (MC3T3-E1 세포의 골기질 단백질 발현에 대한 혈소판유래성장인자-BB의 효과)

  • Kim, Myo-Sun;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.347-360
    • /
    • 2000
  • Bone remodeling results from the combined process of bone resorption and new bone formation which is regulated in part by some of the polypeptide growth factors such as platelet derived growth factor(PDGF), which has been known to be an important local regulator of bone cell activity and participate in normal bone remodeling. This process includes strictly regulated gene expression of several bone matrix proteins such as type I collagen and osteopontin, a 44 kDa phosphorylated glycoprotein, which has important roles in bone formation. The purpose of this study is to evaluate the effecs of PDGF-BB on the mRNA expression of bone matrix protein, type I collagen and osteopontin, in MC3T3- E1 cell culture. Cells were seeded at $5{\times}10^5$ cells in 10 ml of minimum essential medium alpha(${\alpha}-MEM$) containig 10% fetal bovine serum, 10 mM beta glycerophosphate. 0.1, 1, 10 ng/ml PDGF-BB were added to the cells for the day 3, 7, 14, 21, 28 and cultured for 24 hours. Type I collagen cDNA, Hf677, and osteopontin cDNA were used as probes for northern blot analysis. Total cellular RNA was purified at indicated day and northern blot analysis was performed. The results were as follows : Type I collagen mRNA expressions were higher at the day 3 and 7, and lower in the day 14, 21 in the control groups. In the experimental groups, mRNA expressions were increased when 0.1 ng/ml PDGF-BB were added on the day 3, 7, 21, and decreased in dose-dependent manner on the day 14, decreased at all added dose on the day 28. Osteopontin mRNA expressions were highest in the day 21 groups and lowest in the day 14 groups in the control groups. Interesting results were shown in the day 14 and 21 groups. We found that osteopontin mRNA level was increased in dose dependent manner in the day 14 groups, and decreased dose dependent manner in the day 21 groups. In conclusion, PDGF-BB may have various control effects on type I mRNA expression in the growth and differentiation process of MC3T3-E1 cells and may have contrary regulatory effects on osteopontin mRNA expression. For examples, when the baseline level of osteopontin mRNA was low, as in the day 14, PDGF-BB up-regulated osteopontin mRNA expression in dose dependent manner, and when the baseline level was high as in the day 21, PDGF-BB down-regulated dose dependent manner. Thus, it may be useful for clinical application in periodontal regeneration procedure if further study were performed.

  • PDF

Non-Liner Analysis of Shear Beam Model using Mode Superposition (모드중첩법을 이용한 전단보 모델의 비선형 해석)

  • 김원종;홍성목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.87-96
    • /
    • 1999
  • To analyze the dynamic behavior of structure, direct integration and mode superposition may be utilized in time domain analysis. As finite number of frequencies can give relatively exact solutions, mode superposition is preferable in analyzing structural behavior. In non-linear analysis, however, mode superposition is seldom used since time-varying element stiffness changes stiffness matrix, and the change of stiffness matrix leads to the change of essential constants - natural frequencies and mode shapes. In spite of these difficulties, there are some attempts to adopt mode superposition because of low cost compared to direct integration, but the result is not satisfactory. In this paper, a method using mode superposition in non-linear analysis is presented by separating local element stiffness from global stiffness matrix with the difference between linear and non-linear restoring forces to the external force vectors included. Moreover, the hysteresis model changing with the relative deformation in each floor makes it possible to analyze non-linear behavior of structure. The proposed algorithm is applied to shear beam model and the maximum displacement is compared with the result using direct integration method.

  • PDF

Mineralized Polysaccharide Transplantation Modules Supporting Human MSC Conversion into Osteogenic Cells and Osteoid Tissue in a Non-Union Defect

  • Ge, Qing;Green, David William;Lee, Dong-Joon;Kim, Hyun-Yi;Piao, Zhengguo;Lee, Jong-Min;Jung, Han-Sung
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1016-1023
    • /
    • 2018
  • Regenerative orthopedics needs significant devices to transplant human stem cells into damaged tissue and encourage automatic growth into replacements suitable for the human skeleton. Soft biomaterials have similarities in mechanical, structural and architectural properties to natural extracellular matrix (ECM), but often lack essential ECM molecules and signals. Here we engineer mineralized polysaccharide beads to transform MSCs into osteogenic cells and osteoid tissue for transplantation. Bone morphogenic proteins (BMP-2) and indispensable ECM proteins both directed differentiation inside alginate beads. Laminin and collagen IV basement membrane matrix proteins fixed and organized MSCs onto the alginate matrix, and BMP-2 drove differentiation, osteoid tissue self-assembly, and small-scale mineralization. Augmentation of alginate is necessary, and we showed that a few rationally selected small proteins from the basement membrane (BM) compartment of the ECM were sufficient to up-regulate cell expression of Runx-2 and osteocalcin for osteoid formation, resulting in Alizarin red-positive mineral nodules. More significantly, nested BMP-2 and BM beads added to a non-union skull defect, self-generated osteoid expressing osteopontin (OPN) and osteocalcin (OCN) in a chain along the defect, at only four weeks, establishing a framework for complete regeneration expected in 6 and 12 weeks. Alginate beads are beneficial surgical devices for transplanting therapeutic cells in programmed (by the ECM components and alginate-chitosan properties) reaction environments ideal for promoting bone tissue.

Change of Extracellular Matrix of Human Vocal Fold Fibroblasts by Vibratory Stimulation (진동이 성대세포주의 세포외기질 변화에 대한 연구)

  • Kim, Ji Min;Shin, Sung-Chan;Kwon, Hyun-Keun;Cheon, Yong-Il;Ro, Jung Hoon;Lee, Byung-Joo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.32 no.1
    • /
    • pp.15-23
    • /
    • 2021
  • Background and Objectives During speech, the vocal folds oscillate at frequencies ranging from 100-200 Hz with amplitudes of a few millimeters. Mechanical stimulation is an essential factor which affects metabolism of human vocal folds. The effect of mechanical vibration on the cellular response in the human vocal fold fibroblasts cells (hVFFs) was evaluated. Materials and Method We created a culture systemic device capable of generating vibratory stimulations at human phonation frequencies. To establish optimal cell culture condition, cellular proliferation and viability assay was examined. Quantitative real time polymerase chain reaction was used to assess extracellular matrix (ECM) related and growth factors expression on response to changes in vibratory frequency and amplitude. Western blot was used to investigate ECM and inflammation-related transcription factor activation and its related cellular signaling transduction pathway. Results The cell viability was stable with vibratory stimulation within 24 h. A statistically significant increase of ECM genes (collagen type I alpha 1 and collagen type I alpha 2) and growth factor [transforming growth factor β1 (TGF-β1) and fibroblast growth factor 1 (FGF-1)] observe under the experimental conditions. Vibratory stimulation induced transcriptional activation of NF-κB by phosphorylation of p65 subunit through cellular Mitogen-activated protein kinases activation by extracellular signal regulated kinase and p38 mitogen-activated protein kinases (MAPKs) phosphorylation on hVFFs. Conclusion This study confirmed enhancing synthesis of collagen, TGF-β1 and FGF was testified by vibratory stimulation on hVFFs. This mechanism is thought to be due to the activation of NF-κB and MAPKs. Taken together, these results demonstrate that vibratory bioreactor may be a suitable alternative to hVFFs for studying vocal folds cellular response to vibratory vocalization.