• 제목/요약/키워드: errors in variables

검색결과 458건 처리시간 0.03초

불확실 변수에 대한 구배 최소화를 이용한 강건 최적 설계와 마이크로 자이로스코프에의 응용 (Robust Design in Terms of Minimization of Sensitivity to Uncertainty and Its Application to Design of Micro Gyroscopes)

  • 한정삼;곽병만
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1931-1942
    • /
    • 2002
  • In this paper a formulation of robust optimization is presented and illustrated by a design example of vibratory micro gyroscopes in order to reduce the effect of variations due to uncertainties in MEMS fabrication processes. For the vibratory micro gyroscope considered it is important to match the resonance frequencies of the vertical (sensing) and lateral (driving) modes as close as possible to attain a high sensing sensitivity. A deterministic optimization in which the difference of both the sensing and driving natural frequencies is minimized as an objective function results in highly enhanced performance but apt to be very sensitive to fabrication errors. The formulation proposed is to attain robustness of the performance by including the sensitivity of the response with respect to uncertain variables as a term of objective function to be minimized. This formulation is simple and practically applicable since no detail statistical information on fabrication errors is required. The geometric variables, beam width, length and thickness of vibratory micro gyroscopes are adopted as design variables and at the same time considered as uncertain variables because here occur the fabrication errors. A robustness test in terms of a percentage yield by using the Monte Carlo simulation has shown that the robust optimum produces twice more acceptable designs than the deterministic optimum. Improvement of robustness becomes bigger as the amount of fabrication errors is assumed larger. Considering that the magnitude of fabrication errors and uncertainties in a MEMS structure are comparatively large, the present method is illustrated to be a viable approach for a robust MEMS design.

資料誤差와 回歸分析 (Data Errors and Regression Analysis)

  • 金順基
    • Journal of the Korean Statistical Society
    • /
    • 제7권2호
    • /
    • pp.101-104
    • /
    • 1978
  • This paper considers the problem of estimating $\hat{\beta}$ in the case errors occur in observing the values of q-variables $X_1, X_2, ..., X_q$. The approximated estimator $\hat{\beta}(e)$ is obtained and its expected value, bias and covariance matrix are studied.

  • PDF

독립변수의 측정오차가 예측에 미치는 영향을 평가하기 위한 기준개발 (Development of a Criterion for Assessing the Influence of the Measurement Errors in the Independent Variables on Prediction)

  • 변재현
    • 대한산업공학회지
    • /
    • 제19권1호
    • /
    • pp.39-46
    • /
    • 1993
  • In developing a multiple regression relationship, independent variables are frequently measured with error. For these situations the problem of estimating unknown parameters has been extensively discussed in the literature while little attention has been given to the prediction problem. In this paper a criterion is developed for assessing the severeness of measurement errors in each independent variable on the predicted values. Using the developed criterion we can present a guideline as to which measurement error should be controlled for a more accurate prediction. Proposed methods are illustrated with a standard data system in work measurement.

  • PDF

Cartesian 공간에서 로봇 머니퓰레이터의 퍼지제어 (Fuzzy control of a robot manipulator in Cartesian space)

  • 곽희성;강철구
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.165-173
    • /
    • 1995
  • In order to eliminate position errors existing at the steady state in the motion control of robotic maniprlators, a new fuzzy control algorithm is proposed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller, This controller is applied to the tracking control of robotic manipulators in Cartesian space. Three dimensional look-up table is used to reduce the computational time in rel-time control. Simulation and experimental studies are conducted to evaluate the control performance for the two axis direct drive SCARA robot system.

  • PDF

금융정보시스템의 장애관리를 위한 장애요인변수 추출에 관한 연구 (A Study on Extraction of Defect Causal Variables for Defect Management in Financial Information System)

  • 강태홍;류성열
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권6호
    • /
    • pp.369-376
    • /
    • 2013
  • 금융정보시스템은 국가나 사회의 중요한 인프라로서 실효성 있는 장애관리를 위해서는 장애요인변수의 선택이 매우 중요하다. 본 연구에서는 A사의 3년 간 금융정보시스템에서 발생한 장애를 조사 분석하였다. 조사 분석 결과, 거래량, KOSDAQ 지수의 등락, 공시건수 등 9개의 변수가 채택되어, 이 장애요인 변수들이 실제 장애를 유발한다는 가설을 세우고, 실제 발생한 장애와의 상관관계를 분석하였다. 분석 결과, 거래량, 주문/체결건수, 변경업무, 나스닥 지수의 등락이 유효한 장애요인 변수로서 채택되었다. 따라서 본 연구에서는 이 변수들을 금융정보시스템의 장애관리를 위한 장애모델변수로서 장애예측 모델에 활용할 수 있도록 제안한다.

Estimating the AUC of the MROC curve in the presence of measurement errors

  • G, Siva;R, Vishnu Vardhan;Kamath, Asha
    • Communications for Statistical Applications and Methods
    • /
    • 제29권5호
    • /
    • pp.533-545
    • /
    • 2022
  • Collection of data on several variables, especially in the field of medicine, results in the problem of measurement errors. The presence of such measurement errors may influence the outcomes or estimates of the parameter in the model. In classification scenario, the presence of measurement errors will affect the intrinsic cum summary measures of Receiver Operating Characteristic (ROC) curve. In the context of ROC curve, only a few researchers have attempted to study the problem of measurement errors in estimating the area under their respective ROC curves in the framework of univariate setup. In this paper, we work on the estimation of area under the multivariate ROC curve in the presence of measurement errors. The proposed work is supported with a real dataset and simulation studies. Results show that the proposed bias-corrected estimator helps in correcting the AUC with minimum bias and minimum mean square error.

EIV와 MLP를 이용한 뇌파 기반 운전자의 졸음 감지 시스템 (Electroencephalogram-Based Driver Drowsiness Detection System Using Errors-In-Variables(EIV) and Multilayer Perceptron(MLP))

  • 한형섭;송경영
    • 한국통신학회논문지
    • /
    • 제39C권10호
    • /
    • pp.887-895
    • /
    • 2014
  • 졸음운전은 전체 교통사고 원인 중 큰 비중을 차지하며 그 위험성이 음주운전보다도 크다고 알려져 있다. 따라서 운전자의 졸음을 판단하고 경고하는 시스템 개발에 대한 관심이 높아지고 있으며, 뇌파를 분석하는 것이 운전자의 피로와 졸음을 감지하는데 효과적이라는 연구결과들이 발표되었다. 본 논문은 짧은 시간에 높은 해상도를 가지는 auto-regressive 모델 기법 중 잡음에 강인한 errors-in-variables(EIV) 방법을 이용하여 특징벡터를 추출하고, 다층신경망(multilayer perceptron; MLP)에 적용하여 운전자의 상태를 각성, 천이, 졸음의 세 가지 상태로 분류하는 졸음 감지 시스템을 제안한다. 생체신호의 측정 환경에 따른 성능을 평가하기 위해 높은 진단률을 갖도록 하는 EIV차수를 결정하고, 잡음에 대한 강인성을 확인하기 위해 신호대 잡음비(signal-to-noise ratio; SNR)에 따른 성능을 선형 예측 부호화(linear predictive coding; LPC) 방법과 비교하였다. 이 결과로부터 제안한 EIV와 MLP를 결합한 졸음 감지 시스템은 기존의 LPC와 MLP를 이용한 시스템에 대해 우수한 성능을 얻을 수 있음을 확인하였다.

Wavelet Estimation of Regression Functions with Errors in Variables

  • Kim, Woo-Chul;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.849-860
    • /
    • 1999
  • This paper addresses the issue of estimating regression function with errors in variables using wavelets. We adopt a nonparametric approach in assuming that the regression function has no specific parametric form, To account for errors in covariates deconvolution is involved in the construction of a new class of linear wavelet estimators. using the wavelet characterization of Besov spaces the question of regression estimation with Besov constraint can be reduced to a problem in a space of sequences. Rates of convergence are studied over Besov function classes $B_{spq}$ using $L_2$ error measure. It is shown that the rates of convergence depend on the smoothness s of the regression function and the decay rate of characteristic function of the contaminating error.

  • PDF

Impact of Trend Estimates on Predictive Performance in Model Evaluation for Spatial Downscaling of Satellite-based Precipitation Data

  • Kim, Yeseul;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제33권1호
    • /
    • pp.25-35
    • /
    • 2017
  • Spatial downscaling with fine resolution auxiliary variables has been widely applied to predict precipitation at fine resolution from coarse resolution satellite-based precipitation products. The spatial downscaling framework is usually based on the decomposition of precipitation values into trend and residual components. The fine resolution auxiliary variables contribute to the estimation of the trend components. The main focus of this study is on quantitative analysis of impacts of trend component estimates on predictive performance in spatial downscaling. Two regression models were considered to estimate the trend components: multiple linear regression (MLR) and geographically weighted regression (GWR). After estimating the trend components using the two models,residual components were predicted at fine resolution grids using area-to-point kriging. Finally, the sum of the trend and residual components were considered as downscaling results. From the downscaling experiments with time-series Tropical Rainfall Measuring Mission (TRMM) 3B43 precipitation data, MLR-based downscaling showed the similar or even better predictive performance, compared with GWR-based downscaling with very high explanatory power. Despite very high explanatory power of GWR, the relationships quantified from TRMM precipitation data with errors and the auxiliary variables at coarse resolution may exaggerate the errors in the trend components at fine resolution. As a result, the errors attached to the trend estimates greatly affected the predictive performance. These results indicate that any regression model with high explanatory power does not always improve predictive performance due to intrinsic errors of the input coarse resolution data. Thus, it is suggested that the explanatory power of trend estimation models alone cannot be always used for the selection of an optimal model in spatial downscaling with fine resolution auxiliary variables.

로봇 머니퓰레이터의 정상상태 위치오차를 제거할 수 있는 퍼지제어 알고리듬

  • 강철구;곽희성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.235-240
    • /
    • 1995
  • In order to eliminate position errors existing at the steady state in the motion control of robotic manipulators, a new fuzzy control algorithm is proposed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller. Three dimensional look-up table is used toreduce the computational time in real-time control, and a technique reducing the amount of necessary memory is introduced. Simulation and experimental studies show that the position errors at the steady state are decreased more than 90% compared to those of existing fuzzy controller when the proposed fuzzy controller is applied to the 2 axis direct drive SCARA robot manipulator.

  • PDF