• Title/Summary/Keyword: errors in variables

Search Result 458, Processing Time 0.034 seconds

Inverse Calibration of a Robot Manipulator Using Neural Network (뉴럴 네트워크를 이용한 로봇 매니퓰레이터의 역보정)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.199-204
    • /
    • 1999
  • The robot inverse calibration method using a neural networks is proposed in this paper. A high-order networks has been used in this study. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the difference of joint variables only between measuring value and analytic value about the desired pose(position orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness, the selected compliance automatic robot arm type direct drive robot and anthropomorphic robot are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from ${\pm}$0.15$^{\circ}$to ${\pm}$0.12$^{\circ}$.

  • PDF

A Comparative Study on the Perception of Safety Culture of Airline Flight Crew in Korea (국내 항공사 운항승무원 안전문화 인식도 비교 연구)

  • Hyeon Deok Kim
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.1
    • /
    • pp.103-108
    • /
    • 2024
  • Despite the development of the aviation industry, aircraft accidents caused by human errors by flight crews continue to occur. In order to reduce such human error accidents, it is important to strengthen flight-related regulations and establish a safety culture in which pilots themselves seek to ensure flight safety, rather than requiring flight crew members to follow them. In this study, the sub-concept of safety culture was classified into three latent variables (safety management, safety atmosphere, and process culture) and eight measured variables to investigate the safety culture awareness of domestic flight crew. The survey results were analyzed by type of airline and flight crew. The purpose of this study is to present a plan to improve the performance of revitalizing the safety culture of domestic flight crew through an empirical comparative analysis according to the number of flight hours and years of service at the airline.

Performance Analysis of Monopulse System Based on Second-Order Taylor Expansion of Two Variables in the Presence of an Additive Noise (부가성 잡음이 존재하는 모노펄스 시스템 성능의 2변수 2차 테일러 전개 기반 분석)

  • Ryu, Kyu-Tae;Ham, Hyeong-Woo;Lee, Joon-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 2022
  • In this paper, it is shown how the performance of the monopulse algorithm in additive noise is evaluated. In the previous study, the performance analysis of the amplitude-comparison monopulse algorithm was conducted via the first-order and second-order Taylor expansion of four variables. By defining two new random variables from the four variables, it is shown that computational complexity associated with two random variables is much smaller than that associated with four random variables. Performance in terms of mean square error is analyzed from Monte-Carlo simulation. The scheme proposed in this paper is more efficient than that suggested in the previous study in terms of computational complexity. The expressions derived in this study can be utilized in getting analytic expressions of the mean square errors.

Application of Neyman-Pearson Theorem and Bayes' Rule to Bankruptcy Prediction (네이만-피어슨 정리와 베이즈 규칙을 이용한 기업도산의 가능성 예측)

  • Chang, Kyung;Kwon, Youngsig
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.3
    • /
    • pp.179-190
    • /
    • 1994
  • Financial variables have been used in bankruptcy prediction. Despite of possible errors in prediction, most existing approaches do not consider the causal time sequence of prediction activity and bankruptcy phenomena. This paper proposes a prediction method using Neyman-Pearson Theorem and Bayes' rule. The proposed method uses posterior probability concept and determines a prediction policy with appropriate error rate.

  • PDF

Estimation of Aggregate Matching Function in Korea (한국의 구인·구직 매칭함수 추정)

  • Lee, Daechang
    • Journal of Labour Economics
    • /
    • v.38 no.1
    • /
    • pp.1-30
    • /
    • 2015
  • The aggregate matching function is estimated to explain dynamics among job seekers, vacancies and new hires in Korea. Due to measurement errors inherent in vacancies data, I introduce a latent variable for job openings and use the instrumental variables to correct its endogeneity. Matching efficiency is also estimated using some explanatory variables like job seekers' characteristics and public employment services. The result shows that Korea's matching function also exhibits a constant returns to scale.

  • PDF

A Fuzzy Controller Using Artificial Immune Algorithm for Trajectory Tracking of WMR (경로 추적을 위한 구륜 이동 로봇의 인공 면역 알고리즘을 이용한 퍼지 제어기)

  • Kim Sang-Won;Park Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.561-567
    • /
    • 2006
  • This paper deals with a fuzzy controller using IA(Immune Algorithm) for Trajectory Tracking of 2-DOF WMR(Wheeled Mobile Robot). The global inputs to the WMR are reference position and reference velocity, which are time variables. The global output of WMR is a current position. The tracking controller makes position error to be converged 0. In order to reduce position error, a compensation velocities on the track of trajectory is necessary. Therefore, a FIAC(Fuzzy-IA controller) is proposed to give velocity compensation in this system. Input variables of fuzzy part are position errors in every sampling time. The output values of fuzzy part are compensation velocities. IA are implemented to adjust the scaling factor of fuzzy part. The computer simulation is performed to get the result of trajectory tracking and to prove efficiency of proposed controller.

Combined RP/SP Model with Latent Variables (잠재변수를 이용한 RP/SP 결합모형에 관한 연구)

  • Kim, Jin-Hui;Jeong, Jin-Hyeok;Son, Gi-Min
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.119-128
    • /
    • 2010
  • Mode choice behavior is associated with travelers' latent behavior that is an unobservable preference to travel behavior or mode characteristics. This paper specifically addresses the problem of unobservable factors, that is latent behavior, in mode choice models. Consideration of latent behavior in mode choice models reduces the errors that come from unobservable factors. In this study, the authors defined the latent variables that mean a quantitative latent behavior factors, and developed the combined RP/SP model with latent variables using the mode choice behavior survey data. The data has traveler's revealed preference of existent modes along the Han River and stated preference of new water transit on the Han River. Also, The data has travelers' latent behavior. Latent variables were defined by factor analysis using the latent behaviour data. In conclusion, it is significant that the relationship between traveler's latent behavior and mode choice behavior. In addition, the goodness-of-fit of the mode choice models with latent variables are better than the model without latent variables.

Stochastics and Artificial Intelligence-based Analytics of Wastewater Plant Operation

  • Sung-Hyun Kwon;Daechul Cho
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.145-150
    • /
    • 2023
  • Tele-metering systems have been useful tools for managing domestic wastewater treatment plants (WWTP) over the last decade. They mostly generate water quality data for discharged water to ensure that it complies with mandatory regulations and they may be able to produce every operation parameter and additional measurements in the near future. A sub-big data group, comprised of about 150,000 data points from four domestic WWTPs, was ready to be classified and also analyzed to optimize the WWTP process. We used the Statistical Product and Service Solutions (SPSS) 25 package in order to statistically treat the data with linear regression and correlation analysis. The major independent variables for analysis were water temperature, sludge recycle rate, electricity used, and water quality of the influent while the dependent variables representing the water quality of the effluent included the total nitrogen, which is the most emphasized index for discharged flow in plants. The water temperature and consumed electricity showed a strong correlation with the total nitrogen but the other indices' mutual correlations with other variables were found to be fuzzy due to the large errors involved. In addition, a multilayer perceptron analysis method was applied to TMS data along with root mean square error (RMSE) analysis. This study showed that the RMSE in the SS, T-N, and TOC predictions were in the range of 10% to 20%.

A Study on the Inverse Calibration of Industrial Robot Using Neural Networks (신경회로망을 이용한 산업용 로봇의 역보정에 관한연구)

  • 서운학
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.108-115
    • /
    • 1999
  • This paper proposes the robot inverse calibration method using a neural networks. A highorder networks called Pi-Sigma networks has been used. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the difference of joint variables only between measuring value and analytic value about the desired pose(position orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness the SCARA type direct drive robot(4-DOF) and anthropomorphic robot(6-DOF) are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from $\pm$3 to $\pm$0.1.

  • PDF

A Study on the Inverse Calibration of Industrial Robot(AM1) Using Neural Networks (신경회로망을 이용한 산업용 로봇(AM1)의 역보정에 관한 연구)

  • 안인모
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.131-136
    • /
    • 1999
  • This paper proposes the robot inverse calibration method using a neural networks. A highorder networks called Pi-Sigma networks has been used. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the difference of joint variables only between measuring value and analytic value about the desired pose(position, orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness, the SCARA type direct drive robot(4-DOF) and anthropomorphic robot(6-DOF) are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from $\pm$2$^{\circ}$to $\pm$ 0.1$^{\circ}$.

  • PDF