• Title/Summary/Keyword: error-prone channel

Search Result 32, Processing Time 0.021 seconds

Spatial Error Concealment Technique for Losslessly Compressed Images Using Data Hiding in Error-Prone Channels

  • Kim, Kyung-Su;Lee, Hae-Yeoun;Lee, Heung-Kyu
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.168-173
    • /
    • 2010
  • Error concealment techniques are significant due to the growing interest in imagery transmission over error-prone channels. This paper presents a spatial error concealment technique for losslessly compressed images using least significant bit (LSB)-based data hiding to reconstruct a close approximation after the loss of image blocks during image transmission. Before transmission, block description information (BDI) is generated by applying quantization following discrete wavelet transform. This is then embedded into the LSB plane of the original image itself at the encoder. At the decoder, this BDI is used to conceal blocks that may have been dropped during the transmission. Although the original image is modified slightly by the message embedding process, no perceptible artifacts are introduced and the visual quality is sufficient for analysis and diagnosis. In comparisons with previous methods at various loss rates, the proposed technique is shown to be promising due to its good performance in the case of a loss of isolated and continuous blocks.

Error Resilient MPEG-4 Encoding Method (오류 내성을 갖는 MPEG-4 부호화 기법)

  • 현기수;문지용;김기두;강동욱
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.105-109
    • /
    • 2002
  • The main ideas of hybrid video coding methods are to reduce the spatial and temporal redundancy for efficient data compression. If compressed video stream is transmitted through the error-prone channel, bitstream can be critically damaged and the spatio-temporal error propagates through successive frames at the decoder because of drift noise in the references between encoder and decoder. In this paper, I propose the lagrangian multiplier selection method in the error-prone environment. Finally, it is shown that the performance comparisons of the R-D optimized mode decision are made against the conventional method and simulation results are given in the following.

  • PDF

Advanced Error Tracking Algorithm for H.263 (H.263에 적합한 개선된 에러 트래킹 알고리즘)

  • Hyo-seok Lee;Soo-Mok Jung
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.1
    • /
    • pp.123-130
    • /
    • 2004
  • In this paper, an advanced error tracking algorithm by using feedback channel was proposed for error resilient transmission. Using this proposed algorithm, the propagation of errors were reduced within the decoded data over bit error prone network. The addresses of corrupted blocks are reported to encoder by decoder. With negative acknowledgments of feedback channel, the encoder can precisely calculate negative acknowledgments and track the propagated errors by examining the backward motion dependency for proper pixel in the current encoding frame. The error-propagation effects can be terminated completely by INTRA refreshing the affected macro-blocks by using proposed error tracking algorithm. By utilizing the selective four-corner error tracking approximation, the error tracking computations of the proposed algorithm is less than that of the algorithm using full pixel without substantial degradation in video quality. The proposed algorithm can track errors rapidly and accurately.

  • PDF

The Error-Resilient Transmission of MPEG-4 Patient Video using UDP Over CDMA2000 1xEV-DO Network (CDMA2000 1xEV-DO망에서 UDP를 사용한 MPEG-4 환자 영상의 에러에 강인한 전송)

  • Lee Tong-Heon;Yoo Sun-Kook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.510-516
    • /
    • 2005
  • Rapid advances in telecommunication make emergency telemedicine possible that specialist offers medical care to an emergency case in moving vehicle. Although there were many telemedicine projects delivering the image or video of patient over several wireless networks, none of them considered effective solutions for optimizing video transmission over error-prone environments, such like wireless links. To alleviate the effect of channel errors on compressed video bit-stream, this paper analyzed the error resilient features of MPEG-4 standard and measured the quality of transmitted MPEG-4 encoded video over commercially available CDMA2000 1xEV-DO networks, transmitting different IP packet sizes and RM positions. we propose an error resilient transmission methods for emergency telemedicine over real 3G network.

Technological Review of Wireless Video Communication (Wireless Video Communication을 위한 영상부호화 기술)

  • 정영하;최윤식
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.609-614
    • /
    • 1999
  • Our present ability to work with video has not been confined to wired communication environment. This paper describes the new technological trend of wireless video communication. In wireless video communication, unlike wired network, several techniques are needed. At first, error robust video coding is essential. Due to characteristics of wireless channel, the system is exposed to more error prone environment. In addition, encoded video bit streams are vulnerable to the error because of the entropy coding. Recently many frameworks are developed to cope with this problem. We just explore the numerous robust video coding approaches with the viewing of error control. And more we discuss other on going research topics in this wireless video communication fields like low-power assumption design, trans-codec technique, and rate control schemes in brief.

  • PDF

Channel-Adaptive Bidirectional Motion Vector Tracking over Wireless Packet Network (무선 패킷 네트워크에서의 채널 적응형 양방향 움직임 벡터 추적 기술)

  • Pyun, Jae-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.94-101
    • /
    • 2007
  • Streaming video is expected to become a key service in the developing heterogeneous wireless network. However, sufficient quality of service is not offered to video applications because of bursty packet losses. An effective solution for packet loss in wireless network is to perform a proper concealment at the receiver. However, most concealment methods can not conceal effectively the consecutively damaged macro blocks, since the neighboring blocks are lost. In the previous work, bidirectional motion vector tracking (BMVT) method has been proposed which uses the moving trajectory feature of the damaged macro blocks. In this paper, a channel-adaptive redundancy coding method for the better BMVT error concealment is presented. The proposed method provides enhanced video quality at the cost of a little bit overhead in the wireless error-prone network.

Error Concealment Based on Multiple Representation for Wireless Transmission of JPEG2000 Image

  • Ou, Yang;Lee, Won-Young;Yang, Tae-Uk;Chee, Sung-Taek;Rhee, Kyung-Hyune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.68-78
    • /
    • 2008
  • The transmission of multimedia information over error-prone channels such as wireless networks has become an important area of research. In this paper, we propose two Error Concealment(EC) schemes for wireless transmission of JPEG2000 image. The Multiple Representation(MR) is employed as the preprocessing in our schemes, whereas the main error concealing operation is applied in wavelet domain at receiver side. The compressed code-stream of several subsampled versions of original image is transmitted over a single channel with random bit errors. In the decoder side, the correctly reconstructed wavelet coefficients are utilized to recover the corrupted coefficients in other sub-images. The recovery is carried out by proposed basic(MREC-BS) or enhanced(MREC-ES) methods, both of which can be simply implemented. Moreover, there is no iterative processing during error concealing, which results a big time saving. Also, the simulation results confirm the effectiveness and efficiency of our proposed schemes.

Design and performance analysis of turbo codes employing the variable-sized interleaver (가변 크기 인터리버를 사용한 turbo 부호의 설계와 성능 해석)

  • Lee, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.86-95
    • /
    • 2003
  • With the advent of future mobile communication systems, the wireless transmission of the huge amount of multimedia data over the error-prone multipath fading channel has to overcome the inherent sensitivity to channel errors. To alleviate the effect of the channel errors, hosts of techniques based on the forward error correction(FEC) has been proposed at the cost of overhead rate. Among the FEC techniques, turbo code, whose performance has been shown to be very close to the Shannon limit, can be classified as a block-based error correction code. In this paper, considering the variable packet size of the multimedia data, we analyzed turbo codes employing the variable-sized interleaver. The effect of the various parameters on the BER performance is analyzed. We show that the turbo codes can be used as efficient error correction codes of multimedia data.

An Improvement of Still Image Quality Based on Error Resilient Entropy Coding for Random Error over Wireless Communications (무선 통신상 임의 에러에 대한 에러내성 엔트로피 부호화에 기반한 정지영상의 화질 개선)

  • Kim Jeong-Sig;Lee Keun-Young
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.9-16
    • /
    • 2006
  • Many image and video compression algorithms work by splitting the image into blocks and producing variable-length code bits for each block data. If variable-length code data are transmitted consecutively over error-prone channel without any error protection technique, the receiving decoder cannot decode the stream properly. So the standard image and video compression algorithms insert some redundant information into the stream to provide some protection against channel errors. One of redundancies is resynchronization marker, which enables the decoder to restart the decoding process from a known state in the event of transmission errors, but its usage should be restricted not to consume bandwidth too much. The Error Resilient Entropy Code(EREC) is well blown method which can regain synchronization without any redundant information. It can work with the overall prefix codes, which many image compression methods use. This paper proposes EREREC method to improve FEREC(Fast Error-Resilient Entropy Coding). It first calculates initial searching position according to bit lengths of consecutive blocks. Second, initial offset is decided using statistical distribution of long and short blocks, and initial offset can be adjusted to insure all offset sequence values can be used. The proposed EREREC algorithm can speed up the construction of FEREC slots, and can improve the compressed image quality in the event of transmission errors. The simulation result shows that the quality of transmitted image is enhanced about $0.3{\sim}3.5dB$ compared with the existing FEREC when random channel error happens.

Efficient Polling Scheduler for IEEE 802.11 WLAN

  • Kim, Tae-Kon;Lee, Hyung-Keun;Koh, Jin-Hwan
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.171-177
    • /
    • 2007
  • Although the Distributed Coordination Function is the fundamental access protocol of IEEE 802.11, it cannot meet the Quality of Service (QoS) requirements in general. So, the Point Coordinate Function is provided to support QoS related services. However, it has inherent problems. Access point (AP) has no knowledge of the queue status and instantaneous channel condition of stations in the system. In this paper we propose an efficient and versatile polling scheduler that shows excellent throughput and fairness performance. Comparison with well known polling schemes is provided through computer simulation under various channel situations including error prone environments.

  • PDF