• Title/Summary/Keyword: error sensor

Search Result 2,218, Processing Time 0.027 seconds

Deep Learning based BER Prediction Model in Underwater IoT Networks (딥러닝 기반의 수중 IoT 네트워크 BER 예측 모델)

  • Byun, JungHun;Park, Jin Hoon;Jo, Ohyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.41-48
    • /
    • 2020
  • The sensor nodes in underwater IoT networks have practical limitations in power supply. Thus, the reduction of power consumption is one of the most important issues in underwater environments. In this regard, AMC(Adaptive Modulation and Coding) techniques are used by using the relation between SNR and BER. However, according to our hands-on experience, we observed that the relation between SNR and BER is not that tight in underwater environments. Therefore, we propose a deep learning based MLP classification model to reflect multiple underwater channel parameters at the same time. It correctly predicts BER with a high accuracy of 85.2%. The proposed model can choose the best parameters to have the highest throughput. Simulation results show that the throughput can be enhanced by 4.4 times higher than the conventionally measured results.

Design and Analysis of a Receiver-Transmitter Optical System for a Displacement-Measuring Laser Interferometer (위치변위 레이저 간섭계용 송수신 광학계의 설계 및 분석)

  • Yun, Seok-Jae;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.2
    • /
    • pp.75-82
    • /
    • 2017
  • We present a new type of receiver-transmitter optical system that can be adapted to the sensor head of a displacement-measuring interferometer. The interferometer is utilized to control positioning error and repetition accuracy of a wafer, down to the order of 1 nm, in a semiconductor manufacturing process. Currently, according to the tendency of scale-up of wafers, an interferometer is demanded to measure a wider range of displacement. To solve this technical problem, we suggest a new type of receiver-transmitter optical system consisting of a GRIN lens-Collimating lens-Afocal lens system, compared to conventional receiver-transmitter using a single collimating lens. By adapting this new technological optical structure, we can improve coupling efficiency up to about 100 times that of a single conventional collimating lens.

EEG Analysis for Cognitive Mental Tasks Decision (인지적 정신과제 판정을 위한 EEG해석)

  • Kim, Min-Soo;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.289-297
    • /
    • 2003
  • In this paper, we propose accurate classification method of an EEG signals during a mental tasks. In the experimental task, subjects achieved through the process of responding to visual stimulus, understanding the given problem, controlling hand motions, and select a key. To recognize the subjects' selection time, we analyzed with 4 types feature from the filtered brain waves at frequency bands of $\alpha$, $\beta$, $\theta$, $\gamma$ waves. From the analysed features, we construct specific rules for each subject meta rules including common factors in all subjects. In this system, the architecture of the neural network is a three layered feedforward networks with one hidden layer which implements the error back propagation learning algorithm. Applying the algorithms to 4 subjects show 87% classification success rates. In this paper, the proposed detection method can be a basic technology for brain-computer-interface by combining with discrimination methods.

A hardware architecture based on the NCC algorithm for fast disparity estimation in 3D shape measurement systems (고밀도 3D 형상 계측 시스템에서의 고속 시차 추정을 위한 NCC 알고리즘 기반 하드웨어 구조)

  • Bae, Kyeong-Ryeol;Kwon, Soon;Lee, Yong-Hwan;Lee, Jong-Hun;Moon, Byung-In
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.99-111
    • /
    • 2010
  • This paper proposes an efficient hardware architecture to estimate disparities between 2D images for generating 3D depth images in a stereo vision system. Stereo matching methods are classified into global and local methods. The local matching method uses the cost functions based on pixel windows such as SAD(sum of absolute difference), SSD(sum of squared difference) and NCC(normalized cross correlation). The NCC-based cost function is less susceptible to differences in noise and lighting condition between left and right images than the subtraction-based functions such as SAD and SSD, and for this reason, the NCC is preferred to the other functions. However, software-based implementations are not adequate for the NCC-based real-time stereo matching, due to its numerous complex operations. Therefore, we propose a fast pipelined hardware architecture suitable for real-time operations of the NCC function. By adopting a block-based box-filtering scheme to perform NCC operations in parallel, the proposed architecture improves processing speed compared with the previous researches. In this architecture, it takes almost the same number of cycles to process all the pixels, irrespective of the window size. Also, the simulation results show that its disparity estimation has low error rate.

AE Source Location in Anisotropic Plates by Using Nonlinear Analysis (비선형방정식을 이용한 이방성판의 음향방출 위치표정)

  • Lee, Kyung-Joo;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.281-287
    • /
    • 2001
  • For the conventional two-dimensional source location of acoustic emission (AE) based on the threshold crossing, wave velocity has to be measured in the actual structure to calculate the arrival-time difference and thus to form the two hyperbolae. Velocity is dependent on the fiber orientation, however, due to the dependence of elastic modulus on fiber orientation in anisotropic materials such as compost#e plates. This tan affect the accuracy of AE source location and make the source location procedure complicated. In this study, we propose a method to reduce the location error in anisotropic plates by using the numerical solution of nonlinear equations, where the velocity term has been removed by employing the fourth sensor. The efficiency and validity of the proposed method has also been experimentally verified.

  • PDF

Free Vibration Characteristics of 5 × 5 Spacer Grid Assembly Supporting the PWR Fuel Rod (경수로 연료봉을 지지하는 5×5 지지격자체의 자유진동특성)

  • 강흥석;윤경호;송기남;최명환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.512-519
    • /
    • 2004
  • This paper described the free vibration characteristics of Optimized H Type (OHT) spacer grids (SG) supporting the PWR fuel rod. The vibration test and the finite element (FE) analysis are performed under the free boundary condition and the clamped at two points (or three points) in the bottom which is the same one as the experimental condition for the dummy rod continuously supported by spacer grids. A modal test is conducted by the impulse excitation method using an impulse hammer and an accelerometer, and the TDAS module of the I-DEAS software is used to acquire and analyze the sensor signals. The softwares related to the FE analysis are the I-DEAS for the geometrical shape modeling and meshing, and the ABAQUS for solving. The fundamental frequency of the OHT SG by experiment under a clamped condition at two points is 175.18 Hz, and shows a bending mode. We think there is no resonance between the fuel rod and the SG because the SG's frequency is higher than that of the fuel rod existing in the range from 30 to 120 Hz. The fundamental frequency of the SG under the free boundary condition is 349.2 Hz showing a bending mode, and the results between the test and the analysis have a good agreement with maximum 7 % in error It is also found that the FE analysis model of the OHT SGs to analyze an impact, a buckling and vibration et al. has been generated with reliability.

VALIDATION OF SEA ICE MOTION DERIVED FROM AMSR-E AND SSM/I DATA USING MODIS DATA

  • Yaguchi, Ryota;Cho, Ko-Hei
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.301-304
    • /
    • 2008
  • Since longer wavelength microwave radiation can penetrate clouds, satellite passive microwave sensors can observe sea ice of the entire polar region on a daily basis. Thus, it is becoming popular to derive sea ice motion vectors from a pair of satellite passive microwave sensor images observed at one or few day interval. Usually, the accuracies of derived vectors are validated by comparing with the position data of drifting buoys. However, the number of buoys for validation is always quite limited compared to a large number of vectors derived from satellite images. In this study, the sea ice motion vectors automatically derived from pairs of AMSR-E 89GHz images (IFOV = 3.5 ${\times}$ 5.9km) by an image-to-image cross correlation were validated by comparing with sea ice motion vectors manually derived from pairs of cloudless MODIS images (IFOV=250 ${\times}$ 250m). Since AMSR-E and MODIS are both on the same Aqua satellite of NASA, the observation time of both sensors are the same. The relative errors of AMSR-E vectors against MODIS vectors were calculated. The accuracy validation has been conducted for 5 scenes. If we accept relative error of less than 30% as correct vectors, 75% to 92% of AMSR-E vectors derived from one scene were correct. On the other hand, the percentage of correct sea ice vectors derived from a pair of SSM/I 85GHz images (IFOV = 15 ${\times}$ 13km) observed nearly simultaneously with one of the AMSR-E images was 46%. The difference of the accuracy between AMSR-E and SSM/I is reflecting the difference of IFOV. The accuracies of H and V polarization were different from scene to scene, which may reflect the difference of sea ice distributions and their snow cover of each scene.

  • PDF

The leak signal characteristics and estimation of the leak location on water pipeline (상수도관의 누수신호 특성 및 누수지점 추정에 관한 연구)

  • Park, Sangbong;Kim, Kibum;Seo, Jeewon;Kim, Jueon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.461-470
    • /
    • 2018
  • In this study, the leak signal was measured by using an accelerometer to analyze the basic data and methodology for the development of the leak point estimation method in the water supply pipe. The measured results were analyzed by frequency analysis and cross-correlation analysis for leakage signals, and the error range was compared and analyzed with the actual leak point distance. As a result, it was confirmed that the vibration intensity due to leakage from the water leakage point was attenuated according to the distance. In the case of the ductile iron casting used in the experiment, the intensity of the signal at the 945 Hz, 1,500 Hz, 2,300 Hz band was increased with the change of the pressure in the pipe at 4mm of leakage hole. Also, it was confirmed that as the water pressure increases, the intensity of the leak signal increases but the similarity of the signal decreases. The results of this study confirm that the accelerometer sensor can be used efficiently for leak detection and it can be used as a basic data for the analysis for the development of leak point estimation method in the future.

Wire Rope Fault Detection using Probability Density Estimation (확률분포추정기법을 이용한 와이어로프의 결함진단)

  • Jang, Hyeon-Seok;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1758-1764
    • /
    • 2012
  • A large number of wire rope has been used in various inderstiries as Cranes and Elevators from expanding the scale of the industrial market. But now, the management of wire rope is used as manually operated by rope replacement from over time or after the accident.It is caused to major accidents as well as economic losses and personal injury. Therefore its time to need periodic fault diagnosis of wire rope or supply of real-time monitoring system. Currently, there are several methods has been reported for fault diagnosis method of the wire rope, to find out the feature point from extracting method is becoming more common compared to time wave and model-based system. This method has implemented a deterministic modeling like the observer and neural network through considering the state of the system as a deterministic signal. However, the out-put of real system has probability characteristics, and if it is used as a current method on this system, the performance will be decreased at the real time. And if the random noise is occurred from unstable measure/experiment environment in wire rope system, diagnostic criterion becomes unclear and accuracy of diagnosis becomes blurred. Thus, more sophisticated techniques are required rather than deterministic fault diagnosis algorithm. In this paper, we developed the fault diagnosis of the wire rope using probability density estimation techniques algorithm. At first, The steady-state wire rope fault signal detection is defined as the probability model through probability distribution estimate. Wire rope defects signal is detected by a hall sensor in real-time, it is estimated by proposed probability estimation algorithm. we judge whether wire rope has defection or not using the error value from comparing two probability distribution.

Development of Acoustic Emission Training Technique and Localization Method using Q-switched Laser and Multiple Sensors/Single Channel Acquisition (Q-switched 레이저와 다중센서/단일채널 신호수집을 이용한 복합재 구조 음향방출 트레이닝 및 위치탐지 기법 개발)

  • Choi, Yunshil;Lee, Jung-Ryul
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.145-150
    • /
    • 2018
  • Various structural health monitoring (SHM) systems have been suggested for aerospace industry in order to increase its life-cycle and economic efficiency. In the case of aircraft structure madden with metal, a major concern was hot spots, such as notches, bolts holes, and where corrosion or stress concentration occurs due to moisture or salinity. However, with the increasing use of composites in the aerospace industry, further advanced SHM systems have been being required to be applied to composite structures, which have much complex damage mechanism. In this paper, a method of acoustic emission localization for composite structures using Q-switched laser and multiple Amplifier-integrated PZTs have been proposed. The presented technique aims at localization of the AE with an error in distance of less than 10 mm. Acoustic emission simulation and the localization attempt were conducted in the composite structure to validate the suggested method. Localization results, which are coordinates of detected regions, grid plots and color intensity map have been presented together to show reliability of the method.