• Title/Summary/Keyword: error remains

Search Result 124, Processing Time 0.024 seconds

Atmospheric correction by Spectral Shape Matching Method (SSMM): Accounting for horizontal inhomogeneity of the atmosphere

  • Shanmugam Palanisamy;Ahn Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.341-343
    • /
    • 2006
  • The current spectral shape matching method (SSMM), developed by Ahn and Shanmugam (2004), relies on the assumption that the path radiance resulting from scattered photons due to air molecules and aerosols and possibly direct-reflected light from the air-sea interface is spatially homogeneous over the sub-scene of interest, enabling the retrieval of water-leaving radiances ($L_w$) from the satellite ocean color image data. This assumption remains valid for the clear atmospheric conditions, but when the distribution of aerosol loadings varies dramatically the above postulation of spatial homogeneity will be violated. In this study, we present the second version of SSMM which will take into account the horizontal variations of aerosol loading in the correction of atmospheric effects in SeaWiFS ocean color image data. The new version includes models for the correction of the effects of aerosols and Raleigh particles and a method fur computation of diffuse transmittance ($t_{os}$) as similar to SeaWiFS. We tested this method over the different optical environments and compared its effectiveness with the results of standard atmospheric correction (SAC) algorithm (Gordon and Wang, 1994) and those from in-situ observations. Findings revealed that the SAC algorithm appeared to distort the spectral shape of water-leaving radiance spectra in suspended sediments (SS) and algal bloom dominated-areas and frequently yielded underestimated or often negative values in the lower green and blue part of the electromagnetic spectrum. Retrieval of water-leaving radiances in coastal waters with very high sediments, for instance = > 8g $m^{-3}$, was not possible with the SAC algorithm. As the current SAC algorithm does not include models for the Asian aerosols, the water-leaving radiances over the aerosol-dominated areas could not be retrieved from the image and large errors often resulted from an inappropriate extrapolation of the estimated aerosol radiance from two IR bands to visible spectrum. In contrast to the above results, the new SSMM enabled accurate retrieval of water-leaving radiances in a various range of turbid waters with SS concentrations from 1 to 100 g $m^{-3}$ that closely matched with those from the in-situ observations. Regardless of the spectral band, the RMS error deviation was minimum of 0.003 and maximum of 0.46, in contrast with those of 0.26 and 0.81, respectively, for SAC algorithm. The new SSMM also remove all aerosol effects excluding areas for which the signal-to-noise ratio is much lower than the water signal.

  • PDF

On Feasibility of Ambulatory KDRGs for the Classification of Health Insurance Claims (KDRG를 이용한 건강보험 외래 진료비 분류 타당성)

  • 박하영;박기동;신영수
    • Health Policy and Management
    • /
    • v.13 no.1
    • /
    • pp.98-115
    • /
    • 2003
  • Concerns about growing health insurance expenditures became a national Issue in 2001 when the National Health Insurance went into a deficit. Increases in spending for ambulatory care shared the largest portion of the problem. Methods and systems to control the spending should be developed and a system to measure case mix of providers is one of core components of the control system. The objectives of this article is to examine the feasibility of applying Korean Diagnosis Related Groups (KDRGs) to classify health insurance claims for ambulatory care and to identify problem areas of the classification. A database of 11,586,270 claims for ambulatory care delivered during January 2002 was obtained for the study, and the final number of claims analyzed was 8,319,494 after KDRG numbers were assigned to the data and records with an error KDRG were excluded from the study. The unit of analysis was a claim and resource use was measured by the sum of charges incurred during a month at a department of a hospital of at a clinic. Within group variance was assessed by th coefficient of variation (CV), and the classification accuracy was evaluated by the variance reduction achieved by the KDRG classification. The analyses were performed on both all and non-outlier data, and on a subset of the database to examine the validity of study results. Data were assigned to 787 KDRGs among 1,244 KDRGs defined in the classification system. For non-outlier data, 77.4% of KDRGs had a CV of charges from tertiary care hospitals less than 100% and 95.43% of KDRGs for data from clinics. The variance reduction achieved by the KDRG classification was 40.80% for non-outlier claims from tertiary care hospitals, 51.98% for general hospitals, 40.89% for hospitals, and 54.99% for clinics. Similar results were obtained from the analyses performed on a subset of the study database. The study results indicated that KDRGs developed for a classification of inpatient care could be used for ambulatory care, although there were areas where the classification should be refined. Its power to predict tile resource utilization showed a potential for its application to measure case mix of providers for monitoring and managing delivery of ambulatory care. The issue concerning the quality of diagnostic information contained in insurance claims remains to be improved, and significance of future studies for other classification systems based on visits or episodes is guaranteed.

Study on mechanical behaviors of large diameter shield tunnel during assembling

  • Feng, Kun;Peng, Zuzhao;Wang, Chuang;He, Chuan;Wang, Qianshen;Wang, Wei;Cao, Songyu;Wang, Shimin;Zhang, Haihua
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.623-635
    • /
    • 2018
  • In order to study the mechanical behavior of shield tunnel segments during assembly stage, the in-situ tests and FDM numerical simulation were conducted based on the Foguan Shiziyang Tunnel with large cross-section. Analysis for the load state of the assembling segments in different assembly steps as well as the investigation for the changing of inner forces and longitudinal stress of segments with assembling steps were carried out in this paper. By comparing the tested results with the simulated results, the conclusions and suggestions could be drawn as follows: (1) It is the most significant for the effects on axial force and bending moment caused by the assembly of adjacent segment, followed by the insertion of key segment while the effects in the other assembly steps are relative smaller. With the increasing value of axial force, the negative bending moment turns into positive and remains increasing in most monitored sections, while the bending moment of segment B1and B6 are negative and keeping increasing; (2) The closer the monitored section to the adjacent segments or the key segment, the more significant the internal forces response, and the monitored effects of key segment insertion are more obvious than that of calculation; (3) The axial forces are all in compression during assembling and the monitored values are about 1.5~1.75 times larger than the calculated values, and the monitored values of bending moment are about 2 times the numerical calculation. The bending moment is more sensitive to the segments assembly process compared with axial force, and it will result in the large bending moment of segments during assembling when the construction parameters are not suitable or the assembly error is too large. However, the internal forces in assembly stage are less than those in normal service stage; (4) The distribution of longitudinal stress has strong influence on the changing of the internal forces. The segment side surface and intrados in the middle of two adjacent jacks are the crack-sensitive positions in the early assembly stage, and subsequently segment corners far away from the jacks become the crack-sensitive parts either.

The influence of misinformation on memory: detection of original memory using concealed information test (CIT) (기억에 대한 오정보의 영향: 숨긴정보검사를 이용한 원기억의 탐지)

  • Han, Yuhwa;Park, Kwangbai
    • Science of Emotion and Sensibility
    • /
    • v.18 no.2
    • /
    • pp.85-100
    • /
    • 2015
  • This study aimed at examining if the original memory remains after a misinformation is presented, using Event-Related Potential based Concealed Information Test (ERP-based CIT). In the first stage of the study, the participant was presented with either the original information or a misleading information after experiencing an event (Post-information). The second stage was to measure brain wave and reaction time on the original, misleading, and irrelevant information (CIT-Stimulus). P300 amplitude, P300 area, P300 latency, and reaction time were used as dependant variables. In the result, a significant Post-information ${\times}$ CIT-Stimulus interaction effect was found on the P300 area measured at Cz, Pz, and Oz area. This interaction effect implied the possibility that the original information could be partially impaired in memory by misleading information presented afterward. P300 amplitude at Pz area did not differ between the accurate and the misleading stimuli in the condition in which a misleading information was presented. This result can be explained by source monitoring error. In discussion, the limitations of this study and directions of future studies were discussed.

New Methods for Correcting the Atmospheric Effects in Landsat Imagery over Turbid (Case-2) Waters

  • Ahn Yu-Hwan;Shanmugam P.
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.289-305
    • /
    • 2004
  • Atmospheric correction of Landsat Visible and Near Infrared imagery (VIS/NIR) over aquatic environment is more demanding than over land because the signal from the water column is small and it carries immense information about biogeochemical variables in the ocean. This paper introduces two methods, a modified dark-pixel substraction technique (path--extraction) and our spectral shape matching method (SSMM), for the correction of the atmospheric effects in the Landsat VIS/NIR imagery in relation to the retrieval of meaningful information about the ocean color, especially from Case-2 waters (Morel and Prieur, 1977) around Korean peninsula. The results of these methods are compared with the classical atmospheric correction approaches based on the 6S radiative transfer model and standard SeaWiFS atmospheric algorithm. The atmospheric correction scheme using 6S radiative transfer code assumes a standard atmosphere with constant aerosol loading and a uniform, Lambertian surface, while the path-extraction assumes that the total radiance (L/sub TOA/) of a pixel of the black ocean (referred by Antoine and Morel, 1999) in a given image is considered as the path signal, which remains constant over, at least, the sub scene of Landsat VIS/NIR imagery. The assumption of SSMM is nearly similar, but it extracts the path signal from the L/sub TOA/ by matching-up the in-situ data of water-leaving radiance, for typical clear and turbid waters, and extrapolate it to be the spatially homogeneous contribution of the scattered signal after complex interaction of light with atmospheric aerosols and Raleigh particles, and direct reflection of light on the sea surface. The overall shape and magnitude of radiance or reflectance spectra of the atmospherically corrected Landsat VIS/NIR imagery by SSMM appears to have good agreement with the in-situ spectra collected for clear and turbid waters, while path-extraction over turbid waters though often reproduces in-situ spectra, but yields significant errors for clear waters due to the invalid assumption of zero water-leaving radiance for the black ocean pixels. Because of the standard atmosphere with constant aerosols and models adopted in 6S radiative transfer code, a large error is possible between the retrieved and in-situ spectra. The efficiency of spectral shape matching has also been explored, using SeaWiFS imagery for turbid waters and compared with that of the standard SeaWiFS atmospheric correction algorithm, which falls in highly turbid waters, due to the assumption that values of water-leaving radiance in the two NIR bands are negligible to enable retrieval of aerosol reflectance in the correction of ocean color imagery. Validation suggests that accurate the retrieval of water-leaving radiance is not feasible with the invalid assumption of the classical algorithms, but is feasible with SSMM.

Development of an Ensemble-Based Multi-Region Integrated Odor Concentration Prediction Model (앙상블 기반의 악취 농도 다지역 통합 예측 모델 개발)

  • Seong-Ju Cho;Woo-seok Choi;Sang-hyun Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.383-400
    • /
    • 2023
  • Air pollution-related diseases are escalating worldwide, with the World Health Organization (WHO) estimating approximately 7 million annual deaths in 2022. The rapid expansion of industrial facilities, increased emissions from various sources, and uncontrolled release of odorous substances have brought air pollution to the forefront of societal concerns. In South Korea, odor is categorized as an independent environmental pollutant, alongside air and water pollution, directly impacting the health of local residents by causing discomfort and aversion. However, the current odor management system in Korea remains inadequate, necessitating improvements. This study aims to enhance the odor management system by analyzing 1,010,749 data points collected from odor sensors located in Osong, Chungcheongbuk-do, using an Ensemble-Based Multi-Region Integrated Odor Concentration Prediction Model. The research results demonstrate that the model based on the XGBoost algorithm exhibited superior performance, with an RMSE of 0.0096, significantly outperforming the single-region model (0.0146) with a 51.9% reduction in mean error size. This underscores the potential for increasing data volume, improving accuracy, and enabling odor prediction in diverse regions using a unified model through the standardization of odor concentration data collected from various regions.

Design of an Inference Control Process in OLAP Data Cubes (OLAP 데이터 큐브에서의 추론통제 프로세스 설계)

  • Lee, Duck-Sung;Choi, In-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.183-193
    • /
    • 2009
  • Both On-Line Analytical Processing (OLAF) data cubes and Statistical Databases (SDBs) deal with multidimensional data sets. and both are concerned with statistical summarizations over the dimensions of the data sets. However, there is a distinction between the two that can be made. While SDBs are usually derived from other base data, OLAF data cubes often represent directly the base data. In other word, the base data of SDBs are the macro-data, whereas the core cubiod data in OLAF data cubes are the micro-data. The base table in OLAF is used to populate the data cube with values of the measure attribute, and each record in the base tables is used to populate a cell of the core cuboid. The fact that OLAF data cubes mostly represent the micro-data may make some records be absent in the base table. Some cells of the core cuboid remain empty, if corresponding records are absent in the base table. Wang and others proposed a method for securing OLAF data cubes against privacy breaches. They assert that the proposed method does not depend on specific types of aggregation functions. In this paper, however, it is found that their assertion on aggregate functions is wrong whenever any cell of the core cuboid remains empty. The objective of this study is to design an inference control process in OLAF data cubes which rectifying Wang's error.

Improvement of Radar Rainfall Estimation Using Radar Reflectivity Data from the Hybrid Lowest Elevation Angles (혼합 최저고도각 반사도 자료를 이용한 레이더 강우추정 정확도 향상)

  • Lyu, Geunsu;Jung, Sung-Hwa;Nam, Kyung-Yeub;Kwon, Soohyun;Lee, Cheong-Ryong;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.109-124
    • /
    • 2015
  • A novel approach, hybrid surface rainfall (KNU-HSR) technique developed by Kyungpook Natinal University, was utilized for improving the radar rainfall estimation. The KNU-HSR technique estimates radar rainfall at a 2D hybrid surface consistings of the lowest radar bins that is immune to ground clutter contaminations and significant beam blockage. Two HSR techniques, static and dynamic HSRs, were compared and evaluated in this study. Static HSR technique utilizes beam blockage map and ground clutter map to yield the hybrid surface whereas dynamic HSR technique additionally applies quality index map that are derived from the fuzzy logic algorithm for a quality control in real time. The performances of two HSRs were evaluated by correlation coefficient (CORR), total ratio (RATIO), mean bias (BIAS), normalized standard deviation (NSD), and mean relative error (MRE) for ten rain cases. Dynamic HSR (CORR=0.88, BIAS= $-0.24mm\;hr^{-1}$, NSD=0.41, MRE=37.6%) shows better performances than static HSR without correction of reflectivity calibration bias (CORR=0.87, BIAS= $-2.94mm\;hr^{-1}$, NSD=0.76, MRE=58.4%) for all skill scores. Dynamic HSR technique overestimates surface rainfall at near range whereas it underestimates rainfall at far ranges due to the effects of beam broadening and increasing the radar beam height. In terms of NSD and MRE, dynamic HSR shows the best results regardless of the distance from radar. Static HSR significantly overestimates a surface rainfall at weaker rainfall intensity. However, RATIO of dynamic HSR remains almost 1.0 for all ranges of rainfall intensity. After correcting system bias of reflectivity, NSD and MRE of dynamic HSR are improved by about 20 and 15%, respectively.

Three-dimensional Model Generation for Active Shape Model Algorithm (능동모양모델 알고리듬을 위한 삼차원 모델생성 기법)

  • Lim, Seong-Jae;Jeong, Yong-Yeon;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.28-35
    • /
    • 2006
  • Statistical models of shape variability based on active shape models (ASMs) have been successfully utilized to perform segmentation and recognition tasks in two-dimensional (2D) images. Three-dimensional (3D) model-based approaches are more promising than 2D approaches since they can bring in more realistic shape constraints for recognizing and delineating the object boundary. For 3D model-based approaches, however, building the 3D shape model from a training set of segmented instances of an object is a major challenge and currently it remains an open problem in building the 3D shape model, one essential step is to generate a point distribution model (PDM). Corresponding landmarks must be selected in all1 training shapes for generating PDM, and manual determination of landmark correspondences is very time-consuming, tedious, and error-prone. In this paper, we propose a novel automatic method for generating 3D statistical shape models. Given a set of training 3D shapes, we generate a 3D model by 1) building the mean shape fro]n the distance transform of the training shapes, 2) utilizing a tetrahedron method for automatically selecting landmarks on the mean shape, and 3) subsequently propagating these landmarks to each training shape via a distance labeling method. In this paper, we investigate the accuracy and compactness of the 3D model for the human liver built from 50 segmented individual CT data sets. The proposed method is very general without such assumptions and can be applied to other data sets.

P300 speller using a new stimulus presentation paradigm (새로운 자극제시방법을 사용한 P300 문자입력기)

  • Eom, Jin-Sup;Yang, Hye-Ryeon;Park, Mi-Sook;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.107-116
    • /
    • 2013
  • In the implementation of a P300 speller, rows and columns paradigm (RCP) is most commonly used. However, the RCP remains subject to adjacency-distraction error and double-flash problems. This study suggests a novel P300 speller stimuli presentation-the sub-block paradigm (SBP) that is likely to solve the problems effectively. Fifteen subjects participated in this experiment where both SBP and RCP were used to implement the P300 speller. Electroencephalography (EEG) activity was recorded from Fz, Cz, Pz, Oz, P3, P4, PO7, and PO8. Each paradigm consisted of a training phase to train a classifier and a testing phase to evaluate the speller. Eighteen characters were used for the target stimuli in the training phase. Additionally, 5 subjects were required to spell 50 characters and the rest of the subjects were to spell 25 characters in the testing phase. Classification accuracy results show that average accuracy was significantly higher in SBP as of 83.73% than that of RCP as of 66.40%. Grand mean event-related potentials (ERPs) at Pz show that positive peak amplitude for the target stimuli was greater in SBP compared to that of RCP. It was found that subjects tended to attend more to the characters in SBP. According to the participants' ratings on how comfortable they were with using each type of paradigm on 7-point Likert scale, most subjects responded 'very difficult' in RCP while responding 'medium' and 'easy' in SBP. The result showed that SBP was felt more comfortable than RCP by the subjects. In sum, the SBP was more correct in P300 speller performance as well as more convenient for users than the RCP. The actual limitations in the study were discussed in the last part of this paper.

  • PDF