• Title/Summary/Keyword: error process

Search Result 4,100, Processing Time 0.032 seconds

Tool Deflection Estimation in Micro Flat End-milling Using Finite Element Method (유한요소법을 이용한 마이크로 평엔드밀링에서의 공구변형 예측)

  • Lim, Jeong-Su;Cho, Hee-Ju;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.498-503
    • /
    • 2010
  • The main purpose of this study strongly concerned micro machining error estimation by using FEM analysis of tool deflection shapes in micro flat end-milling process. For the precision micro flat end-milling process, analysis of micro cutting errors is mandatory. In general, tool deflection is a major factor which causes cutting error and limits realization of the high-precision cutting process. Especially, in micro end-milling process, micro tool deflection generates very serious problems in contrast to macro tool deflection. Methods which deal with compensation of cutting error by tool deflection in macro end-milling process have been studied plentifully but, few researches transact with micro scaled cutting tool deflection in micro cutting process. Therefore, the trend of micro tool deflection was estimated by using FEM analysis in this paper. Cutting forces were acquired by micro dynamometer and these were utilized in FEM analysis. In order to verify FEM analysis results, micro machining processes were carried out and real machined profiles were compared with FEM results. Finally through the proposed approach well suited FEM results were obtained.

Fault Tolerant Cryptography Circuit for Data Transmission Errors (데이터 전송 오류에 대한 고장 극복 암호회로)

  • You, Young-Gap;Park, Rae-Hyeon;Ahn, Young-Il;Kim, Han-Byeo-Ri
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.10
    • /
    • pp.37-44
    • /
    • 2008
  • This paper presented a solution to encryption and decryption problem suffering data transmission error for encrypted message transmission. Block cypher algorithms experience avalanche effect that a single bit error in an encrypted message brings substantial error bits after decryption. The proposed fault tolerant scheme addresses this error avalanche effect exploiting a multi-dimensional data array shuffling process and an error correction code. The shuffling process is to simplify the error correction. The shuffling disperses error bits to many data arrays so that each n-bit data block may comprises only one error bit. Thereby, the error correction scheme can easily restore the one bit error in an n-bit data block. This scheme can be extended on larger data blocks.

A Two-Step Screening Algorithm to Solve Linear Error Equations for Blind Identification of Block Codes Based on Binary Galois Field

  • Liu, Qian;Zhang, Hao;Yu, Peidong;Wang, Gang;Qiu, Zhaoyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3458-3481
    • /
    • 2021
  • Existing methods for blind identification of linear block codes without a candidate set are mainly built on the Gauss elimination process. However, the fault tolerance will fall short when the intercepted bit error rate (BER) is too high. To address this issue, we apply the reverse algebra approach and propose a novel "two-step-screening" algorithm by solving the linear error equations on the binary Galois field, or GF(2). In the first step, a recursive matrix partition is implemented to solve the system linear error equations where the coefficient matrix is constructed by the full codewords which come from the intercepted noisy bitstream. This process is repeated to derive all those possible parity-checks. In the second step, a check matrix constructed by the intercepted codewords is applied to find the correct parity-checks out of all possible parity-checks solutions. This novel "two-step-screening" algorithm can be used in different codes like Hamming codes, BCH codes, LDPC codes, and quasi-cyclic LDPC codes. The simulation results have shown that it can highly improve the fault tolerance ability compared to the existing Gauss elimination process-based algorithms.

Types of Medication Error to Be Used in Korea (의약품 사용 오류)

  • Kim, Hyungtae;Choi, Hye Duck;Kim, Siin;Han, Sola;Lee, Iyn-Hyang;Suh, Hae Sun
    • The Journal of Health Technology Assessment
    • /
    • v.5 no.1
    • /
    • pp.31-41
    • /
    • 2017
  • Objectives: To explore prevalently used types of medication error and the types of medication error which would be appropriate to be used in Korea. Methods: In depth literature review was performed to explore the mostly used types of medication error in the United States, Canada, Europe, Australia, and Japan. We intended to examine experts' view on the suitability of the types of medication error to be used in Korea. The types of medicati0on error were classified by activity criteria, severity criteria, process criteria, and responsible person criteria based on literature reviews. Results: According to the result of literature review, activity criteria was the most commonly used type of medication error. Ten experts in the area of patient-safety and medication error responded and the top two types of medication error which were appropriate and suitable to be used in Korea were severity criteria and activity criteria. Conclusion: Severity criteria and activity criteria could be recommended to be used as the standard types of medication error in Korea although there are other types of criteria such as process criteria and responsible person criteria.

Thermal Deformation Analysis of an Orbital Grinding System Grinding Process (오비탈 연삭시스템의 연삭가공 열변형 오차 해석)

  • Lee, Hyeon Min;Choi, Woo Chun;Cho, Chang Rae;Cho, Soon Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.595-600
    • /
    • 2016
  • An orbital grinding system uses a special motion to machine crankshafts in ships. When a crankshaft is operated, eccentric pins rotate and a grinding wheel moves in order to grind the pins. Thermal error caused by heat generated in the grinding process decreases the quality of the final product. In this study, the thermal error of an orbital grinding system caused by heat generation was investigated in order to predict the extent of thermal error that can occur during the grinding process. Since the machine position changes during orbital grinding, the pin part is divided into 30 degree intervals and heat is generated. Total thermal error was measured by summing the thermal errors associated with the pin and the grinding wheel. Total thermal error was found to reach a maximum at 60 degrees and a minimum at 210 degrees because of the shape of the crankshaft.

A Study of Methodology to Examine Organizational Root Causes through the Retrospect Error Analysis of Railroad Accident Cases

  • Ra, Doo Wan;Cha, Woo Chang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.103-113
    • /
    • 2015
  • Objective: This study proposes a systematic process to present the analysis methods and solutions of organizational root causes to human errors on the railroad. Background: In fact, organizational root cause such as organizational culture is an important factor in the safety concerns on human errors in the nuclear power plant, railroad and aircraft. Method: The proposed process is as follows: 1) define analysis boundary 2) select human error taxonomy 3) perform accident analysis 4) draw root causes with FGI 5) review root causes analysis with survey 6) chart analysis of root causes, and 7) propose alternatives and solutions. Results: As a result, root causes of the organizations like railroad and nuclear power plant came from the educational problems, violations, payoff system, safety culture and so forth. Conclusion: The proposed process does predict potential railroad accident through retrospect error analysis by building new human error taxonomies and problem solution. Application: This study would contribute to examination of the relationship between human error-based accidents and organizational root causes.

Autofocus system for off-line focusing error compensation in micro laser fabrication process (레이저 미세가공용 자동초점장치를 이용한 오프라인 초점 오차 보상에 관한 연구)

  • Kim, Sang-In;Kim, Ho-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.50-58
    • /
    • 2009
  • Micro laser fabrication techniques can potentially be used for the manufacture of microstructures on the thin flat surfaces with large diameter that are frequently used in semiconductor industries. However, the large size of wafers can cause the degraded machining accuracy of the surface because it can be tilted or distorted by geometric errors of machines or the holding fixtures, etc. To overcome these errors the off-line focusing error compensation method is proposed. By using confocal autofocus system, the focusing error profile of machined surface is measured along the pre-determined path and can be compensated at the next machining process by making the corrected motion trajectories. The experimental results for silicon wafers and invar flat surfaces show that the proposed method can compensate the focusing error within the level of below $6.9{\mu}m$ that is the depth of focus required for the laser micromachining process.

Automatic Alignment and Mounting of FPCs Using Machine Vision (머신비전을 이용한 FPC의 자동정렬 및 장착)

  • Shin, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.24-30
    • /
    • 2007
  • The FPCs(Flexible Printed Circuit) are currently used in several electronic products like digital cameras, cellular phones because of flexible material characteristics. Because the FPC is usually small size and flexible, only one FPC should not enter chip mounting process, instead, several FPCs are placed on the large rigid pallette and enter into the chip mounting process. Currently the job of mounting FPC on the pallette is carried by totally manual way. Thus, the goals of the research is develop the automatic machine of FPC mounting on pallette using vision alignment. Instead of using two cameras or using moving one camera, the proposed vision system with only one fixed camera is adopted. Moreover, the two picker heads which can handle two FPCs simultaneously are used to make process time shortened. The procedure of operation is firstly to measure alignment error of FPC, correct alignment errors, and finally mount well-aligned FPC on the pallette. The vision technology is used to measure alignment error accurately, and precision motion control is used in correcting errors and mounting FPC.

  • PDF

Development of Extended Process Capability Index in Terms of Error Classification in the Production, Measurement and Calibration Processes (생산, 측정 및 교정 프로세스에서 오차 유형화에 의한 확장 공정능력지수의 개발)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.2
    • /
    • pp.117-126
    • /
    • 2009
  • We develop methods for propagating and analyzing EPCI(Extended Process Capability Index) by using the error type that classifies into accuracy and precision. EPCI developed in this study can be applied to the three combined processes that consist of production, measurement and calibration. Little calibration work discusses while a great deal has been studied about SPC(Statistical Process Contol) and MSA(Measurement System Analysis). EPCI can be decomposed into three indexes such as PPCI(Production Process Capability Index), PPPI(Production Process Performance Index), MPCI(Measurement PCD, and CPCI(Calibration PCI). These indexs based on the type of error classification can be used with various statistical techniques and principles such as SPC control charts, ANOVA(Analysis of Variance), MSA Gage R&R, Additivity-of-Variance, and RSSM(Root Sum of Square Method). As the method proposed is simple, any engineer in charge of SPC. MSA and calibration can use efficientily in industries. Numerical examples are presentsed. We recommed that the indexes can be used in conjunction with evaluation criteria.

Condition Monitoring in Multilayer Stacking Processes (적층 공정에서의 상태 기반 모니터링)

  • Min, Hyungcheol;Lee, Younggon;Jeong, Haedong;Park, Seungtae;Lee, Seungchul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.739-742
    • /
    • 2014
  • In the process of MLCC manufacturing, MLCC stacking process is the key process of making high quality MLCC. Since MLCC is small components, the entire process of MLCC stacking process is minute and sensitive to micro errors. To prevent micro error, we suggest condition-based monitoring which quantifies error based on feature extraction and quantifying error method. As results, it has been shown that the suggested algorithm has effectiveness of condition based monitoring of MLCC stacker.

  • PDF