• Title/Summary/Keyword: error optimization

Search Result 1,211, Processing Time 0.03 seconds

Comparison of Three Optimization Methods Using Korean Population Data

  • Oh, Deok-Kyo
    • Korean System Dynamics Review
    • /
    • v.13 no.2
    • /
    • pp.47-71
    • /
    • 2012
  • The purpose of this research is the examination of validity of data as well as simulation model, i.e. to simulate the real data in the SD model with the least error using the adjustments for the faithful reflection of real data to the simulation. In general, SD programs (e.g. VENSIM) utilize the Euler or Runge-Kutta method as an algorithm. It is possible to reflect the trend of real data via these two estimation methods however can cause the validity problem in case of the simulation requiring the accuracy as they have endogenous errors. In this article, the future population estimated by the Korea National Statistical Office (KNSO) to 2050 is simulated by the aging chain model, dividing the population into three cohorts, 0-14, 15-64, 65 and over cohorts by age and offering the adjustments to them. Adjustments are calculated by optimization with three different methods, optimization in EXCEL, manual optimization with iterative calculation, and optimization in VENSIM DSS, the results are compared, and at last the optimal adjustment set with the least error are found among them. The simulation results with the pre-determined optimal adjustment set are validated by methods proposed by Barlas (1996) and other alternative methods. It is concluded that the result of simulation model in this research has no significant difference from the real data and reflects the real trend faithfully.

  • PDF

Henry gas solubility optimization for control of a nuclear reactor: A case study

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.940-947
    • /
    • 2022
  • Meta-heuristic algorithms have found their place in optimization problems. Henry gas solubility optimization (HGSO) is one of the newest population-based algorithms. This algorithm is inspired by Henry's law of physics. To evaluate the performance of a new algorithm, it must be used in various problems. On the other hand, the optimization of the proportional-integral-derivative (PID) gains for load-following of a nuclear power plant (NPP) is a good challenge to assess the performance of HGSO. Accordingly, the power control of a pressurized water reactor (PWR) is targeted, based on the point kinetics model with six groups of delayed-neutron precursors. In any optimization problem based on meta-heuristic algorithms, an efficient objective function is required. Therefore, the integral of the time-weighted square error (ITSE) performance index is utilized as the objective (cost) function of HGSO, which is constrained by a stability criterion in steady-state operations. A Lyapunov approach guarantees this stability. The results show that this method provides superior results compared to an empirically tuned PID controller with the least error. It also achieves good accuracy compared to an established GA-tuned PID controller.

Rate-Distortion Oprimized Error-Resilient Intra Update in MPEG-4 Video Coding (MPEG-4 동영상 압축에서 비트율과 오류 내성을 고려한 인트라 업데이트)

  • Kim, Woo-Shik;Park, Rae-Hong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.591-601
    • /
    • 2002
  • Motion compensation is a powerful method to compress an image sequence. Its main drawback is that once an error is occurred, the error propagates through the frames. Recently, the intra update method was proposed to stop the error propagation at the expense of reduction in compression efficiency. This paper proposes an intra update method based on a rate-distortion optimization in error prone environments. The rate and the distortion are estimated using the Lagrangian optimization to select the coding mode and the quantization step size. The proposed method is applied to MPEG-4 codec, and the experimental results show that it is robust to the error such as packet losses comparing with the conventional ones.

Optimum Design for Reducing Steering Error of Rack-and-Pinion Steering Linkage (랙-피니언 조향기구의 조향오차 최적설계)

  • 홍경진;최동훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.43-53
    • /
    • 1998
  • This paper addresses an optimization for reducing a steering error of a rack-and-pinion steering linkage with a MacPherson strut independent front suspension system. The length, orientations and inner joint positions of a tie-rod are selected as design variables and Ackerman geonetry, understeer effect, minimum turn radius, wheel alignment and packaging are considered as design constraints. Nonlinear kinematic analysis of the steering system is performed for calculating the values of cost and constraints, and Augmented Lagrange Multiplier(ALM) method is used for solving the constrained optinization problem. The optimization results show that the steering error are considerably reduced while satisfying all the constraints.

  • PDF

Calibration of 6-DOF Parallel Mechanism Through the Measurement of Volumetric Error (공간오차 측정을 통한 6자유도 병렬기구의 보정)

  • Oh, Yong-Taek;Saragih, Agung S.;Kim, Jeong-Hyun;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.48-54
    • /
    • 2012
  • This paper introduces the kinematic calibration method to improve the positioning accuracy of a parallel mechanism. Since all the actuators in the parallel mechanism are controlled simultaneously toward the target position, the volumetric errors originated from each motion element are too complicated. Therefore, the exact evaluation of the error sources of each motion element and its calibration is very important in terms of volumetric errors. In the calibration processes, the measurement of the errors between commands and trajectories is necessary in advance. To do this, a digitizer was used for the data acquisition in 3 dimensional space rather than arbitrary planar error data. After that, the optimization process that was used for reducing the motion errors were followed. Consequently, Levenberg-Marquart algorithm as well as the error data acquisition method turned out effective for the purpose of the calibration of the parallel mechanism.

OPTIMIZATION OF ERROR PATH MODEL IN FILTERED-X LMS ALGORITHM FOR NAROW BAND NOISE SUPPRESSION

  • Kim, Hyoun-Suk;Park, Youngjin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.43-46
    • /
    • 1995
  • Adaptive algorithms based on gradient adaptation have been extensively investigated and successfully jointed with active noise/vibration control applications. The Filtered-X LMS algorithm became one of the basic feedforward algorithms in such applications, but still is not fully understood. The error path model effect on the Filtered-X LMS algorithm has been under the investigation and some useful properties related stability has been discovered. We are interested in utilizing the fact that the model error caused by the way optimizing the error path model in a view point of convergence speed of Filtered-X LMS algorithm for pure tone noise suppression application without any performance loss at steady state.

  • PDF

Optimization of Unequal Error Protection Rateless Codes for Multimedia Multicasting

  • Cao, Yu;Blostein, Steven D.;Chan, Wai-Yip
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.221-230
    • /
    • 2015
  • Rateless codes have been shown to be able to provide greater flexibility and efficiency than fixed-rate codes for multicast applications. In the following, we optimize rateless codes for unequal error protection (UEP) for multimedia multicasting to a set of heterogeneous users. The proposed designs have the objectives of providing either guaranteed or best-effort quality of service (QoS). A randomly interleaved rateless encoder is proposed whereby users only need to decode symbols up to their own QoS level. The proposed coder is optimized based on measured transmission properties of standardized raptor codes over wireless channels. It is shown that a guaranteed QoS problem formulation can be transformed into a convex optimization problem, yielding a globally optimal solution. Numerical results demonstrate that the proposed optimized random interleaved UEP rateless coder's performance compares favorably with that of other recently proposed UEP rateless codes.

Robust Kalman Filter Design via Selecting Performance Indices (성능지표 선정을 통한 강인한 칼만필터 설계)

  • Jung Jongchul;Huh Kunsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.59-66
    • /
    • 2005
  • In this paper, a robust stationary Kalman filter is designed by minimizing selected performance indices so that it is less sensitive to uncertainties. The uncertainties include not only stochastic factors such as process noise and measurement noise, but also deterministic factors such as unknown initial estimation error, modeling error and sensing bias. To reduce the effect on the uncertainties, three performance indices that should be minimized are selected based on the quantitative error analysis to both the deterministic and the stochastic uncertainties. The selected indices are the size of the observer gain, the condition number of the observer matrix, and the estimation error variance. The observer gain is obtained by optimally solving the multi-objectives optimization problem that minimizes the indices. The robustness of the proposed filter is demonstrated through the comparison with the standard Kalman filter.

Optimization of Motion Control System on the Machine Tool (공작기계의 이송계 제어 시스템의 최적화)

  • 박인준;곽경남;백형래
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.336-340
    • /
    • 1997
  • This paper is a study about motor technic of motion and feedforward control in order to shape cutting control on the machine tool. The shape error caused by delay of the servo system in the direction of radius at the time of circular cutting is reduced by feedforward control, shape error generated by the position command delay is minimized by using the acceleration/deceleration time constant after the interpolation. The study was verified to optimization of motion control on experiments of a vertical machining center of the machine tool.

  • PDF

Predictive Optimization Adjusted With Pseudo Data From A Missing Data Imputation Technique (결측 데이터 보정법에 의한 의사 데이터로 조정된 예측 최적화 방법)

  • Kim, Jeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.200-209
    • /
    • 2019
  • When forecasting future values, a model estimated after minimizing training errors can yield test errors higher than the training errors. This result is the over-fitting problem caused by an increase in model complexity when the model is focused only on a given dataset. Some regularization and resampling methods have been introduced to reduce test errors by alleviating this problem but have been designed for use with only a given dataset. In this paper, we propose a new optimization approach to reduce test errors by transforming a test error minimization problem into a training error minimization problem. To carry out this transformation, we needed additional data for the given dataset, termed pseudo data. To make proper use of pseudo data, we used three types of missing data imputation techniques. As an optimization tool, we chose the least squares method and combined it with an extra pseudo data instance. Furthermore, we present the numerical results supporting our proposed approach, which resulted in less test errors than the ordinary least squares method.