• Title/Summary/Keyword: error optimization

Search Result 1,211, Processing Time 0.033 seconds

A study on the improvement of shape design sensitivity in eigenvalue problems using semi-analytical method (반해석적 방법을 이용한 고유치 문제의 형상 설계 민감도 향상에 관한 연구)

  • 김현기;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.159-166
    • /
    • 2001
  • Structural optimization often requires the evaluation of design sensitivities. The Semi Aanalytic method(SAM) for computing sensitivity is popular in shape optimization because this method has several advantages. But when relatively large rigid body motions are identified for individual elements, the SA method shows severe inaccuracy. In this paper, the improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes. Moreover, the error of the SA method caused by numerical difference scheme is alleviated by using a series approximation for the sensitivity derivatives and considering the higher order terms. Finally, this paper shows that the refined SA method including the iterative method improves the results of sensitivity analysis in dynamic problems.

  • PDF

Validation of vehicle dynamic no del by using the optimization tool (최적화 툴을 이용한 동특성 해석 모델 검증)

  • Park, Kil-Bae;Seung, Jae-Ho;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1557-1565
    • /
    • 2009
  • According to the GM/RT2141, to assess the safety of vehicle, the validated the vehicle dynamic model should be applied. The validation of the vehicle model is against the static test, some kind of vehicle type test results have been used to determine the suspension characteristics and the vehicle dynamic characteristics. To validate the vehicle model and the test results, first the test results has been analysed as to specified the suspension characteristics and than the parameters to related with the test result has to be adjusted to show the same results of the test. In this process the parameters of vehicle model have been determined to show the coherence of the two results of the simulation and the test by trial & error. In this report, the optimization tool has been introduced in this model validation process and shows the efficient and well validated model.

  • PDF

An Effective Mesh Smoothing Technique for the Mesh Constructed by the Mesh Compression Technique (격자압축법을 이용하여 구성된 격자의 효과적인 격자유연화 방법)

  • 홍진태;이석렬;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.340-347
    • /
    • 2003
  • In the rigid-plastic finite element simulation of hot forging processes using hexahedral mesh, remeshing of a flash is important for design and control of the process to obtain desirable defect-free products. The mesh compression method is a remeshing technique which enables the construction of an effective hexahedral mesh in the flash. However, because the mesh is distorted during the compression procedure of the mesh compression method, when it is used in resuming the analysis, it causes discretization error and decreases the conversance rate. Therefore, mesh smoothing is necessary to improve the mesh quality. In this study, several geometric mesh smoothing techniques and optimization techniques are introduced and modified to improve mesh quality. Then, the most adaptive technique is recommended for the mesh compression method.

Multiresponse Optimization Through A New Desirability Function Considering Process Parameter Fluctuation (공정변수의 변동을 고려한 만족도 함수를 통한 다중반응표면 최적화)

  • Gwon Jun-Beom;Lee Jong-Seok;Lee Sang-Ho;Jeon Chi-Hyeok;Kim Gwang-Jae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.39-44
    • /
    • 2004
  • A desirability function approach to a multiresponse problem is proposed considering process parameter fluctuation as well as distance-to-target of response and response variance. The variation of process parameters amplifies the variance of responses. It is called POE (propagation of error), which is defined as the standard deviation of the transmitted variability in the response as a function of process parameters. In order to obtain more robust process parameters, this variability should be considered in the optimization problem. The proposed method is illustrated using a rubber product case.

  • PDF

The Displacement Minimization of the tool Center Point by the Crossrail Structure Improvement of the Portal Machine (공구 중심점의 변위 최소화를 위한 문형 공작기계의 크로스레일 개선 연구)

  • Lee, Myung-Gyu;Song, Ki-Hyeong;Choi, Hag-Bong;Lee, Dong-Yoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.310-315
    • /
    • 2011
  • General portal machine represents a distinct weak spot concerning their structural behavior because of long protruding structure components, such as saddles and rams. The weak point causes the deformation of the machine tool and consequently rises a severe machining error. The purpose of this study is to improve the structural design of crossrail in order to minimize it's distortion. Tool Center Point (TCP) was chosen as a reference point for evaluating the distortion effect of a crossrail and topological optimization was adopted as a method of structural design improvement. The displacements of TCP according to the machining positions were investigated by structural analyses for both of original crossrail design and the improved one. The comparing results showed that the displacement of TCP could be reduced about 55% maximum.

The Co-Evolutionary Algorithms and Intelligent Systems

  • June, Chung-Young;Byung, Jun-Hyo;Bo, Sim-Kwee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.553-559
    • /
    • 1998
  • Simple Genetic Algorithm(SGA) proposed by J. H. Holland is a population-based optimization method based on the principle of the Darwinian natural selection. The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. Although GA goes well in many applications as an optimization method, still it does not guarantee the convergence to a global optimum in some problems. In designing intelligent systems, specially, since there is no deterministic solution, a heuristic trial-and error procedure is usually used to determine the systems' parameters. As an alternative scheme, therefore, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve. In this paper we review the existing co-evolutionary algorithms and propose co-evolutionary schemes designing intelligent systems according to the relation between the system's components.

  • PDF

PSO-Based Nonlinear PI-type Controller Design for Boost Converter

  • Seo, Sang-Wha;Kim, Yong;Choi, Han Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.211-219
    • /
    • 2018
  • This paper designs a nonlinear PI-type controller for the robust control of a boost DC-DC converter using a particle swarm optimization (PSO) algorithm. Based on the common knowledge that the transient responses can be improved if the P and I gains increase when the transient error is big, a nonlinear PI-type control design method is developed. A design procedure to autotune the nonlinear P and I gains is given based on a PSO algorithm. The proposed nonlinear PI-type controller is implemented in real time on a Texas Instruments TMS320F28335 floating-point DSP. Simulation and experimental results are given to demonstrate the effectiveness and practicality of the proposed method.

Shape optimization of a bow for maximizing internal-energy (내부에너지를 최대로 하는 활 구조의 최적화)

  • Moon, Myeong-Jo;Lee, Hyun-Jung
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.222-227
    • /
    • 2016
  • In this paper, the optimized design for bow structure was investigated by using EDISON software. Considering the mechanism of the bow, non-linear FEM analysis was essential. The factors of the design are height, width, number of holes and taper value. High performance of the internal energy and lowest mass were main issues. The limit of the von-mises stress was yield strength for the material. Material was chosen by considering typical bow material, Aluminum. Using Taguchi method($L_9$), 9 models were selected and contribution rate was calculated for each factors. Following the contribution rate, 3 factors were fixed and optimized model was predicted. After making optimized model for FEM analysis, the value of internal-energy, mass for FEM model were compared with predicted value, calculated the percentage error and figure out the reliability of Taguchi method.

  • PDF

Gain Optimization by Using Genetic Algorithm for Magnetic Levitation Controller (유전 알고리즘을 이용한 자기부상 제어기의 게인 최적화)

  • Kim, Jong-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1327-1329
    • /
    • 2005
  • This paper presents a gam optimization method using genetic algorithm(GA) for a magnetic levitation(Maglev) controller. GA uses the integral of square error(ISE) as performance index. The plant dynamics are described and modelled by mathematical equations. Also, the system apparatus for the Maglev system are described. Using the derived model, to optimize the feedback gains of conventional state feedback controller(SFC), GA is simulated with SIMULINK model. finally, using the optimized feedback gains, SFC is applied to the Maglev system. From the results, we can see that GA can give a solution for the better control performance for the Maglev system.

  • PDF

The optimal arrangement of RFID tags for mobile robot's position estimation (이동 로봇의 위치 추정을 위한 RFID Tag의 효율적 배치)

  • Song S.H.;Park H.H.;Moon S.W.;Ji Y.K.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.901-905
    • /
    • 2005
  • It is very important to arrange landmarks when a mobile robot needs to measure its own location. So, it has been discussed often how to arrange landmarks in the optimal way until now. We, there, chose the RFID (Radio frequency Identification) tags as landmarks which can be observed by a mobile robot, and demonstrated the possibility of the optimal arrangement of them. For this work first, we defined the optimization problem and its parameters for the arrangement of tags. Second, we proposed the algorithm which can be applied to the optimization problem. Finally we could obtain closely optimal and practical arrangement with the minimum number of landmarks which satisfied the necessary condition by experimentation.

  • PDF