• Title/Summary/Keyword: error optimization

Search Result 1,211, Processing Time 0.029 seconds

Evolutionary-base finite element model updating and damage detection using modal testing results

  • Vahidi, Mehdi;Vahdani, Shahram;Rahimian, Mohammad;Jamshidi, Nima;Kanee, Alireza Taghavee
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.339-350
    • /
    • 2019
  • This research focuses on finite element model updating and damage assessment of structures at element level based on global nondestructive test results. For this purpose, an optimization system is generated to minimize the structural dynamic parameters discrepancies between numerical and experimental models. Objective functions are selected based on the square of Euclidean norm error of vibration frequencies and modal assurance criterion of mode shapes. In order to update the finite element model and detect local damages within the structural members, modern optimization techniques is implemented according to the evolutionary algorithms to meet the global optimized solution. Using a simulated numerical example, application of genetic algorithm (GA), particle swarm (PSO) and artificial bee colony (ABC) algorithms are investigated in FE model updating and damage detection problems to consider their accuracy and convergence characteristics. Then, a hybrid multi stage optimization method is presented merging advantages of PSO and ABC methods in finding damage location and extent. The efficiency of the methods have been examined using two simulated numerical examples, a laboratory dynamic test and a high-rise building field ambient vibration test results. The implemented evolutionary updating methods show successful results in accuracy and speed considering the incomplete and noisy experimental measured data.

Optimizations for Mobile MIMO Relay Molecular Communication via Diffusion with Network Coding

  • Cheng, Zhen;Sun, Jie;Yan, Jun;Tu, Yuchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1373-1391
    • /
    • 2022
  • We investigate mobile multiple-input multiple-output (MIMO) molecular communication via diffusion (MCvD) system which is consisted of two source nodes, two destination nodes and one relay node in the mobile three-dimensional channel. First, the combinations of decode-and-forward (DF) relaying protocol and network coding (NC) scheme are implemented at relay node. The adaptive thresholds at relay node and destination nodes can be obtained by maximum a posteriori (MAP) probability detection method. Then the mathematical expressions of the average bit error probability (BEP) of this mobile MIMO MCvD system based on DF and NC scheme are derived. Furthermore, in order to minimize the average BEP, we establish the optimization problem with optimization variables which include the ratio of the number of emitted molecules at two source nodes and the initial position of relay node. We put forward an iterative scheme based on block coordinate descent algorithm which can be used to solve the optimization problem and get optimal values of the optimization variables simultaneously. Finally, the numerical results reveal that the proposed iterative method has good convergence behavior. The average BEP performance of this system can be improved by performing the joint optimizations.

Compressive strength of masonry structures through metaheuristics optimization algorithms

  • Ziqi Liu;Hossein Moayedi;Mehmet Akif Cifci;Mohammad Hannan;Erkut Sayin
    • Smart Structures and Systems
    • /
    • v.34 no.3
    • /
    • pp.181-201
    • /
    • 2024
  • This study presents a comparative analysis of three nature-inspired algorithms-Black Hole Algorithm (BHA), Earthworm Optimization Algorithm (EWA), and Future Search Algorithm (FSA)-for predicting the compressive strength of masonry structures. Each algorithm was integrated with a Multilayer Perceptron (MLP) model, using a structural dimension, rebound number, ultrasonic pulse velocity, and failure load dataset. The dataset was divided into training (70%) and testing (30%) subsets to evaluate model performance. Root Mean Square Error (RMSE) and the coefficient of determination (R2) were employed as statistical indices to measure accuracy. The BHA-MLP model achieved the best performance, with an RMSE of 0.04731 and an R2 of 0.9995 for the training dataset and an RMSE of 0.06537 and an R2 of 0.99877 for the testing dataset, securing the highest overall score. FSA-MLP ranked second, demonstrating strong predictive performance, followed by EWA-MLP, which performed with lower accuracy but still showed valuable results. The study highlights the potential of using these nature-inspired optimization algorithms to enhance the predictive accuracy of compressive strength in masonry structures, offering insights for engineering and policymaking to improve structural safety and performance.

Development of optimization teaching and learning materials for artificial intelligence mathematics using ChatGPT and Python (ChatGPT와 파이썬을 활용한 <인공지능 수학>의 최적화 교수·학습 자료 개발 연구)

  • Lee, Seunghoon;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.38 no.3
    • /
    • pp.459-486
    • /
    • 2024
  • The purpose of this study is to enhance understanding and utilization of the core mathematical principles of artificial intelligence, and to develop teaching and learning materials that apply algorithmic thinking and integrated methodologies. To achieve this, teaching and learning materials were developed to implement the concept of optimization through Python using ChatGPT, focusing on mean squared error and gradient descent, structured into a total of five sessions. These materials were applied to high school students, and observations of their understanding, learning methods, and attitudes showed positive responses. As a result, the effectiveness of the AI mathematics optimization teaching and learning materials developed in this study and their applicability in educational settings were confirmed.

Error Resilient Video Coding Techniques Using Multiple Description Scheme (다중 표현을 이용한 에러에 강인한 동영상 부호화 방법)

  • 김일구;조남익
    • Journal of Broadcast Engineering
    • /
    • v.9 no.1
    • /
    • pp.17-31
    • /
    • 2004
  • This paper proposes an algorithm for the robust transmission of video in error Prone environment using multiple description codingby optimal split of DCT coefficients and rate-distortionoptimization framework. In MDC, a source signal is split Into several coded streams, which is called descriptions, and each description is transmitted to the decoder through different channel. Between descriptions, structured correlations are introduced at the encoder, and the decoder exploits this correlation to reconstruct the original signal even if some descriptions are missing. It has been shown that the MDC is more resilient than the singe description coding(SDC) against severe packet loss ratecondition. But the excessive redundancy in MDC, i.e., the correlation between the descriptions, degrades the RD performance under low PLR condition. To overcome this Problem of MDC, we propose a hybrid MDC method that controls the SDC/MDC switching according to channel condition. For example, the SDC is used for coding efficiency at low PLR condition and the MDC is used for the error resilience at high PLR condition. To control the SDC/MDC switching in the optimal way, RD optimization framework are used. Lagrange optimization technique minimizes the RD-based cost function, D+M, where R is the actually coded bit rate and D is the estimated distortion. The recursive optimal pet-pixel estimatetechnique is adopted to estimate accurate the decoder distortion. Experimental results show that the proposed optimal split of DCT coefficients and SD/MD switching algorithm is more effective than the conventional MU algorithms in low PLR conditions as well as In high PLR condition.

A Univariate Loss Function Approach to Multiple Response Surface Optimization: An Interactive Procedure-Based Weight Determination (다중반응표면 최적화를 위한 단변량 손실함수법: 대화식 절차 기반의 가중치 결정)

  • Jeong, In-Jun
    • Knowledge Management Research
    • /
    • v.21 no.1
    • /
    • pp.27-40
    • /
    • 2020
  • Response surface methodology (RSM) empirically studies the relationship between a response variable and input variables in the product or process development phase. The ultimate goal of RSM is to find an optimal condition of the input variables that optimizes (maximizes or minimizes) the response variable. RSM can be seen as a knowledge management tool in terms of creating and utilizing data, information, and knowledge about a product production and service operations. In the field of product or process development, most real-world problems often involve a simultaneous consideration of multiple response variables. This is called a multiple response surface (MRS) problem. Various approaches have been proposed for MRS optimization, which can be classified into loss function approach, priority-based approach, desirability function approach, process capability approach, and probability-based approach. In particular, the loss function approach is divided into univariate and multivariate approaches at large. This paper focuses on the univariate approach. The univariate approach first obtains the mean square error (MSE) for individual response variables. Then, it aggregates the MSE's into a single objective function. It is common to employ the weighted sum or the Tchebycheff metric for aggregation. Finally, it finds an optimal condition of the input variables that minimizes the objective function. When aggregating, the relative weights on the MSE's should be taken into account. However, there are few studies on how to determine the weights systematically. In this study, we propose an interactive procedure to determine the weights through considering a decision maker's preference. The proposed method is illustrated by the 'colloidal gas aphrons' problem, which is a typical MRS problem. We also discuss the extension of the proposed method to the weighted MSE (WMSE).

Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm

  • Chatterjee, Sankhadeep;Sarkar, Sarbartha;Hore, Sirshendu;Dey, Nilanjan;Ashour, Amira S.;Shi, Fuqian;Le, Dac-Nhuong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.429-438
    • /
    • 2017
  • Structural design has an imperative role in deciding the failure possibility of a Reinforced Concrete (RC) structure. Recent research works achieved the goal of predicting the structural failure of the RC structure with the assistance of machine learning techniques. Previously, the Artificial Neural Network (ANN) has been trained supported by Particle Swarm Optimization (PSO) to classify RC structures with reasonable accuracy. Though, keeping in mind the sensitivity in predicting the structural failure, more accurate models are still absent in the context of Machine Learning. Since the efficiency of multi-objective optimization over single objective optimization techniques is well established. Thus, the motivation of the current work is to employ a Multi-objective Genetic Algorithm (MOGA) to train the Neural Network (NN) based model. In the present work, the NN has been trained with MOGA to minimize the Root Mean Squared Error (RMSE) and Maximum Error (ME) toward optimizing the weight vector of the NN. The model has been tested by using a dataset consisting of 150 RC structure buildings. The proposed NN-MOGA based model has been compared with Multi-layer perceptron-feed-forward network (MLP-FFN) and NN-PSO based models in terms of several performance metrics. Experimental results suggested that the NN-MOGA has outperformed other existing well known classifiers with a reasonable improvement over them. Meanwhile, the proposed NN-MOGA achieved the superior accuracy of 93.33% and F-measure of 94.44%, which is superior to the other classifiers in the present study.

Adaptive Learning Based on Bit-Significance Optimization with Hebbian Learning Rule and Its Electro-Optic Implementation (Hebb의 학습 법칙과 화소당 가중치 최소화 기법에 의한 적응학습 및 그의 전기광학적 구현)

  • Lee, Soo-Young;Shim, Chang-Sup;Koh, Sang-Ho;Jang, Ju-Seog;Shin, Sang-Yung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.108-114
    • /
    • 1989
  • Introducing and optimizing bit-significance to the Hopfield model, ten highly correlated binary images, i.e., numbers "0" to "9", are successfully stored and retrieved in a $6{}8$ node system. Unlike many other neural network models, this model has stronger error correction capability for correlated images such as "6","8","3", and "9". The bit significance optimization is regarded as an adaptive learning process based on least-mean-square error algorithm, and may be implemented with Widrow-Hoff neural nets optimizer. A design for electro-optic implementation including the adaptive optimization networks is also introduced.

  • PDF

A Sensorless Rotor Position Estimation Scheme for IPMSM Using HF Signal Injection with Frequency and Amplitude Optimization

  • Lu, Jiadong;Liu, Jinglin;Hu, Yihua;Zhang, Xiaokang;Ni, Kai;Si, Jikai
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1945-1955
    • /
    • 2018
  • High frequency signal injection (HFI) is an alternative method for estimating rotor position of interior permanent magnet synchronous motor (IPMSM). The general method of frequency and amplitude selection is based on error tolerance and experiments, and is usually set with only one group of HF parameters, which is not efficient for different working modes. This paper proposes a novel rotor position estimation scheme by HFI with optimized frequency and amplitude, based on the mathematic model of IPMSM. The requirements for standstill and low-speed operational modes are met by applying this novel scheme. Additionally, the effects of the frequency and amplitude of the injected HF signal on the position estimation results under different operating conditions are analyzed. Furthermore, an optimization method for HF parameter selection is proposed to make the estimation process more efficient under different working conditions according to error tolerance. The effectiveness of the propose scheme is verified by the experiments on an IPMSM motor prototype.

A Study on the Design Safety of Type III High-Pressure Hydrogen Storage Vessel (Type III 고압수소저장용기의 설계 안전성 연구)

  • Park, Woo Rim;Jeon, Sang Koo;Kim, Song Mi;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.7-14
    • /
    • 2019
  • The type III vessel, which is used to store high-pressure hydrogen gas, is made by wrapping the vessel's liner with carbon fiber composite materials for strength performance and lightening. The liner seals the internal gas and the composite resists the internal pressure. The properties of the fiber composite material depends on the angle and thickness of the fiber. Thus, engineers should consider these various design variables. However, it significantly increases the design cost due to the trial and error under designing based on experience or experiments. And, for aluminum liners, fatigue loads due to using and charging could give a huge impact on the performance of the structure. However, fatigue failure does not necessarily occur in the position under the highest load in use. Therefore, for hydrogen storage vessel, fatigue evaluation according to design patterns is essential because stress distribution varies depend on composite layer patterns. This study performed an optimization analysis and evaluated a high-pressure hydrogen storage vessel to minimize these trial and error and improve the reliability of the structure, while simultaneously conducting fatigue assessment of all patterns derived from the optimization analysis process. The results of this study are thought to be useful in the strength improvement and life design of composite reinforced high-pressure storage vessels.