• Title/Summary/Keyword: error optimization

Search Result 1,211, Processing Time 0.042 seconds

Beamforming Optimization for Multiuser Two-Tier Networks

  • Jeong, Young-Min;Quek, Tony Q.S.;Shin, Hyun-Dong
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.327-338
    • /
    • 2011
  • With the incitation to reduce power consumption and the aggressive reuse of spectral resources, there is an inevitable trend towards the deployment of small-cell networks by decomposing a traditional single-tier network into a multi-tier network with very high throughput per network area. However, this cell size reduction increases the complexity of network operation and the severity of cross-tier interference. In this paper, we consider a downlink two-tier network comprising of a multiple-antenna macrocell base station and a single femtocell access point, each serving multiples users with a single antenna. In this scenario, we treat the following beamforming optimization problems: i) Total transmit power minimization problem; ii) mean-square error balancing problem; and iii) interference power minimization problem. In the presence of perfect channel state information (CSI), we formulate the optimization algorithms in a centralized manner and determine the optimal beamformers using standard convex optimization techniques. In addition, we propose semi-decentralized algorithms to overcome the drawback of centralized design by introducing the signal-to-leakage plus noise ratio criteria. Taking into account imperfect CSI for both centralized and semi-decentralized approaches, we also propose robust algorithms tailored by the worst-case design to mitigate the effect of channel uncertainty. Finally, numerical results are presented to validate our proposed algorithms.

Discrete sizing and layout optimization of steel truss-framed structures with Simulated Annealing Algorithm

  • Bresolin, Jessica M.;Pravia, Zacarias M.C.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.603-617
    • /
    • 2022
  • Structural design, in general, is developed through trial and error technique which is guided by standards criteria and based on the intuition and experience of the engineer, a context that leads to structural over-dimensioning, with uneconomic solutions. Aiming to find the optimal design, structural optimization methods have been developed to find a balance between cost, structural safety, and material performance. These methods have become a great opportunity in the steel structural engineering domain since they have as their main purpose is weight minimization, a factor directly correlated to the real cost of the structure. Assuming an objective function of minimum weight with stress and displacement constraints provided by Brazilian standards, the present research proposes the sizing optimization and combined approach of sizing and shape optimization, through a software developed to implement the Simulated Annealing metaheuristic algorithm. Therefore, two steel plane frame layouts, each admitting four typical truss geometries, were proposed in order to expose the difference between the optimal solutions. The assessment of the optimal solutions indicates a notable weight reduction, especially in sizing and shape optimization combination, in which the quantity of design variables is increased along with the search space, improving the efficiency of the optimal solutions achieved.

A TSK fuzzy model optimization with meta-heuristic algorithms for seismic response prediction of nonlinear steel moment-resisting frames

  • Ebrahim Asadi;Reza Goli Ejlali;Seyyed Arash Mousavi Ghasemi;Siamak Talatahari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.189-208
    • /
    • 2024
  • Artificial intelligence is one of the efficient methods that can be developed to simulate nonlinear behavior and predict the response of building structures. In this regard, an adaptive method based on optimization algorithms is used to train the TSK model of the fuzzy inference system to estimate the seismic behavior of building structures based on analytical data. The optimization algorithm is implemented to determine the parameters of the TSK model based on the minimization of prediction error for the training data set. The adaptive training is designed on the feedback of the results of previous time steps, in which three training cases of 2, 5, and 10 previous time steps were used. The training data is collected from the results of nonlinear time history analysis under 100 ground motion records with different seismic properties. Also, 10 records were used to test the inference system. The performance of the proposed inference system is evaluated on two 3 and 20-story models of nonlinear steel moment frame. The results show that the inference system of the TSK model by combining the optimization method is an efficient computational method for predicting the response of nonlinear structures. Meanwhile, the multi-vers optimization (MVO) algorithm is more accurate in determining the optimal parameters of the TSK model. Also, the accuracy of the results increases significantly with increasing the number of previous steps.

A New Hidden Error Function for Training of Multilayer Perceptrons (다층 퍼셉트론의 층별 학습 가속을 위한 중간층 오차 함수)

  • Oh Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.57-64
    • /
    • 2005
  • LBL(Layer-By-Layer) algorithms have been proposed to accelerate the training speed of MLPs(Multilayer Perceptrons). In this LBL algorithms, each layer needs a error function for optimization. Especially, error function for hidden layer has a great effect to achieve good performance. In this sense, this paper proposes a new hidden layer error function for improving the performance of LBL algorithm for MLPs. The hidden layer error function is derived from the mean squared error of output layer. Effectiveness of the proposed error function was demonstrated for a handwritten digit recognition and an isolated-word recognition tasks and very fast learning convergence was obtained.

  • PDF

The Optimal Replacement Policy of Auto - Scale with Increasing Error Variance (측정오차(測定誤差)가 증가(增加)하는 자동계량기(自動計量機)의 최적교체시기결정(最適交替時期決定)에 관한 연구(硏究))

  • Go, Jong-Seop;Yun, Deok-Pyo
    • Journal of Korean Society for Quality Management
    • /
    • v.12 no.2
    • /
    • pp.33-36
    • /
    • 1984
  • This paper is concerned with the optimal replacement policy of auto-scale with increasing error-variance. This optimization model is to minimize the sum of the cost of defective and excess weight allowance for a target value. The numerical example for the proposed problem is solved by Golden-Section Search and Simpsons's rule.

  • PDF

Corresponding between Error Probabilities and Bayesian Wrong Decision Lasses in Flexible Two-stage Plans

  • Ko, Seoung-gon
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.435-441
    • /
    • 2000
  • Ko(1998, 1999) proposed certain flexible two-stage plans that could be served as one-step interim analysis in on-going clinical trials. The proposed Plans are optimal simultaneously in both a Bayes and a Neyman-Pearson sense. The Neyman-Pearson interpretation is that average expected sample size is being minimized, subject just to the two overall error rates $\alpha$ and $\beta$, respectively of first and second kind. The Bayes interpretation is that Bayes risk, involving both sampling cost and wrong decision losses, is being minimized. An example of this correspondence are given by using a binomial setting.

  • PDF

Designs for Estimating the Derivatives on Response Surfaces

  • Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • v.8 no.1
    • /
    • pp.37-64
    • /
    • 1979
  • Criteria and designs are developed for estimating derivatives of P-variable second order polynomial response surfaces. The basic criterion used is mean square error of the estimated derivative, averaged over all directions and then averaged over a region of interest. A new design concept called slope-rotatability is introduced. A simplex optimization program is used to find minimum mena square error designs for the two variable case for $6 \leq N \leq 12$.

  • PDF

Optimal Design for Dynamic Resistance Equalization Technique to Minimize Power Loss and Equalization Error

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.50-52
    • /
    • 2019
  • Dynamic resistance equalization is a viable technique to balance SOC of cells in a parallel-connected battery configuration due to high equalization performance, simplicity and low-cost. However, an inappropriate design of the equalization resistor can degrade the equalization performance and increase the power loss. This paper proposes an optimization process to design the equalization resistors to minimize power loss and equalization error. The simulation results show that the optimally designed resistor significantly enhance the performance in comparison with the conventional fixed-resistor equalization.

  • PDF

Automatic Calibration of SWAT Model Using LH-OAT Sensitivity Analysis and SCE-UA Optimization Method (LH-OAT 민감도 분석과 SCE-UA 최적화 방법을 이용한 SWAT 모형의 자동보정)

  • Lee Do-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.8 s.169
    • /
    • pp.677-690
    • /
    • 2006
  • The LH-OAT (Latin Hypercube One factor At a Time) method for sensitivity analysis and SCE-UA (Shuffled Complex Evolution at University of Arizona) optimization method were applied for the automatic calibration of SWAT model in Bocheong-cheon watershed. The LH-OAT method which combines the advantages of global and local sensitivity analysis effectively identified the sensitivity ranking for the parameters of SWAT model over feasible parameter space. Use of this information allows us to select the calibrated parameters for the automatic calibration process. The performance of the automatic calibration of SWAT model using SCE-UA method depends on the length of calibration period, the number of calibrated parameters, and the selection of statistical error criteria. The performance of SWAT model in terms of RMSE (Root Mean Square Error), NSEF (Nash-Sutcliffe Model Efficiency), RMAE (Relative Mean Absolute Error), and NMSE (Normalized Mean Square Error) becomes better as the calibration period and the number of parameters defined in the automatic calibration process increase. However, NAE (Normalized Average Error) and SDR (Standard Deviation Ratio) were not improved although the calibration period and the number of calibrated parameters are increased. The result suggests that there are complex interactions among the calibration data, the calibrated parameters, and the model error criteria and a need for further study to understand these complex interactions at various representative watersheds.

Compiler triggered C level error check (컴파일러에 의한 C레벨 에러 체크)

  • Zheng, Zhiwen;Youn, Jong-Hee M.;Lee, Jong-Won;Paek, Yun-Heung
    • The KIPS Transactions:PartA
    • /
    • v.18A no.3
    • /
    • pp.109-114
    • /
    • 2011
  • We describe a technique for automatically proving compiler optimizations sound, meaning that their transformations are always semantics-preserving. As is well known, IR (Intermediate Representation) optimization is an important step in a compiler backend. But unfortunately, it is difficult to detect and debug the IR optimization errors for compiler developers. So, we introduce a C level error check system for detecting the correctness of these IR transformation techniques. In our system, we first create an IR-to-C converter to translate IR to C code before and after each compiler optimization phase, respectively, since our technique is based on the Memory Comparison-based Clone(MeCC) detector which is a tool of detecting semantic equivalency in C level. MeCC accepts only C codes as its input and it uses a path-sensitive semantic-based static analyzer to estimate the memory states at exit point of each procedure, and compares memory states to determine whether the procedures are equal or not. But MeCC cannot guarantee two semantic-equivalency codes always have 100% similarity or two codes with different semantics does not get the result of 100% similarity. To increase the reliability of the results, we describe a technique which comprises how to generate C codes in IR-to-C transformation phase and how to send the optimization information to MeCC to avoid the occurrence of these unexpected problems. Our methodology is illustrated by three familiar optimizations, dead code elimination, instruction scheduling and common sub-expression elimination and our experimental results show that the C level error check system is highly reliable.