• Title/Summary/Keyword: error optimization

Search Result 1,211, Processing Time 0.031 seconds

Application of The Semi-Distributed Hydrological Model(TOPMODEL) for Prediction of Discharge at the Deciduous and Coniferous Forest Catchments in Gwangneung, Gyeonggi-do, Republic of Korea (경기도(京畿道) 광릉(光陵)의 활엽수림(闊葉樹林)과 침엽수림(針葉樹林) 유역(流域)의 유출량(流出量) 산정(算定)을 위한 준분포형(準分布型) 수문모형(水文模型)(TOPMODEL)의 적용(適用))

  • Kim, Kyongha;Jeong, Yongho;Park, Jaehyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.2
    • /
    • pp.197-209
    • /
    • 2001
  • TOPMODEL, semi-distributed hydrological model, is frequently applied to predict the amount of discharge, main flow pathways and water quality in a forested catchment, especially in a spatial dimension. TOPMODEL is a kind of conceptual model, not physical one. The main concept of TOPMODEL is constituted by the topographic index and soil transmissivity. Two components can be used for predicting the surface and subsurface contributing area. This study is conducted for the validation of applicability of TOPMODEL at small forested catchments in Korea. The experimental area is located at Gwangneung forest operated by Korea Forest Research Institute, Gyeonggi-do near Seoul metropolitan. Two study catchments in this area have been working since 1979 ; one is the natural mature deciduous forest(22.0 ha) about 80 years old and the other is the planted young coniferous forest(13.6 ha) about 22 years old. The data collected during the two events in July 1995 and June 2000 at the mature deciduous forest and the three events in July 1995 and 1999, August 2000 at the young coniferous forest were used as the observed data set, respectively. The topographic index was calculated using $10m{\times}10m$ resolution raster digital elevation map(DEM). The distribution of the topographic index ranged from 2.6 to 11.1 at the deciduous and 2.7 to 16.0 at the coniferous catchment. The result of the optimization using the forecasting efficiency as the objective function showed that the model parameter, m and the mean catchment value of surface saturated transmissivity, $lnT_0$ had a high sensitivity. The values of the optimized parameters for m and InT_0 were 0.034 and 0.038; 8.672 and 9.475 at the deciduous and 0.031, 0.032 and 0.033; 5.969, 7.129 and 7.575 at the coniferous catchment, respectively. The forecasting efficiencies resulted from the simulation using the optimized parameter were comparatively high ; 0.958 and 0.909 at the deciduous and 0.825, 0.922 and 0.961 at the coniferous catchment. The observed and simulated hyeto-hydrograph shoed that the time of lag to peak coincided well. Though the total runoff and peakflow of some events showed a discrepancy between the observed and simulated output, TOPMODEL could overall predict a hydrologic output at the estimation error less than 10 %. Therefore, TOPMODEL is useful tool for the prediction of runoff at an ungaged forested catchment in Korea.

  • PDF

The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition (PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화)

  • Hong, Gun-Chul;Park, Sun-Myung;Kwak, In-Suk;Lee, Hyuk;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Purpose: Partial volume effect (PVE) is the phenomenon to lower the accuracy of image due to low estimate, which is to occur from PET/CT 3D image acquisition. The more resolution is declined and the lesion is small, the more it causes a big error. So that it can influence the test result. Studied the optimum image reconstruction method by using variation of parameter, which can influence the PVE. Materials and Methods: It acquires the image in each size spheres which is injected $^{18}F$-FDG to hot site and background in the ratio 4:1 for 10 minutes by using NEMA 2001 IEC phantom in GE Discovey STE 16. The iterative reconstruction is used and gives variety to iteration 2-50 times, subset number 1-56. The analysis's fixed region of interest in detail part of image and compute % difference and signal to noise ratio (SNR) using $SUV_{max}$. Results: It's measured that $SUV_{max}$ of 10 mm spheres, which is changed subset number to 2, 5, 8, 20, 56 in fixed iteration to times, SNR is indicated 0.19, 0.30, 0.40, 0.48, 0.45. As well as each sphere's of total SNR is measured 2.73, 3.38, 3.64, 3.63, 3.38. Conclusion: In iteration 6th to 20th, it indicates similar value in % difference and SNR ($3.47{\pm}0.09$). Over 20th, it increases the phenomenon, which is placed low value on $SUV_{max}$ through the influence of noise. In addition, the identical iteration, it indicates that SNR is high value in 8th to 20th in variation of subset number. Therefore, to reduce partial volume effect of small lesion, it can be declined the partial volume effect in iteration 6 times, subset number 8~20 times, considering reconstruction time.

  • PDF

Optimum Design of Two Hinged Steel Arches with I Sectional Type (SUMT법(法)에 의(依)한 2골절(滑節) I형(形) 강재(鋼材) 아치의 최적설계(最適設計))

  • Jung, Young Chae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.65-79
    • /
    • 1992
  • This study is concerned with the optimal design of two hinged steel arches with I cross sectional type and aimed at the exact analysis of the arches and the safe and economic design of structure. The analyzing method of arches which introduces the finite difference method considering the displacements of structure in analyzing process is used to eliminate the error of analysis and to determine the sectional force of structure. The optimizing problems of arches formulate with the objective functions and the constraints which take the sectional dimensions(B, D, $t_f$, $t_w$) as the design variables. The object functions are formulated as the total weight of arch and the constraints are derived by using the criteria with respect to the working stress, the minimum dimension of flange and web based on the part of steel bridge in the Korea standard code of road bridge and including the economic depth constraint of the I sectional type, the upper limit dimension of the depth of web and the lower limit dimension of the breadth of flange. The SUMT method using the modified Newton Raphson direction method is introduced to solve the formulated nonlinear programming problems which developed in this study and tested out throught the numerical examples. The developed optimal design programming of arch is tested out and examined throught the numerical examples for the various arches. And their results are compared and analyzed to examine the possibility of optimization, the applicablity, the convergency of this algorithm and with the results of numerical examples using the reference(30). The correlative equations between the optimal sectional areas and inertia moments are introduced from the various numerical optimal design results in this study.

  • PDF

Evaluation of Approximate Exposure to Low-dose Ionizing Radiation from Medical Images using a Computed Radiography (CR) System (전산화 방사선촬영(CR) 시스템을 이용한 근사적 의료 피폭 선량 평가)

  • Yu, Minsun;Lee, Jaeseung;Im, Inchul
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.455-464
    • /
    • 2012
  • This study suggested evaluation of approximately exposure to low-dose ionization radiation from medical images using a computed radiography (CR) system in standard X-ray examination and experimental model can compare diagnostic reference level (DRL) will suggest on optimization condition of guard about medical radiation of low dose space. Entrance surface dose (ESD) cross-measuring by standard dosimeter and optically stimulated luminescence dosimeters (OSLDs) in experiment condition about tube voltage and current of X-ray generator. Also, Hounsfield unit (HU) scale measured about each experiment condition in CR system and after character relationship table and graph tabulate about ESD and HU scale, approximately radiation dose about head, neck, thoracic, abdomen, and pelvis draw a measurement. In result measuring head, neck, thoracic, abdomen, and pelvis, average of ESD is 2.10, 2.01, 1.13, 2.97, and 1.95 mGy, respectively. HU scale is $3,276{\pm}3.72$, $3,217{\pm}2.93$, $2,768{\pm}3.13$, $3,782{\pm}5.19$, and $2,318{\pm}4.64$, respectively, in CR image. At this moment, using characteristic relationship table and graph, ESD measured approximately 2.16, 2.06, 1.19, 3.05, and 2.07 mGy, respectively. Average error of measuring value and ESD measured approximately smaller than 3%, this have credibility cover all the bases radiology area of measurement 5%. In its final analysis, this study suggest new experimental model approximately can assess radiation dose of patient in standard X-ray examination and can apply to CR examination, digital radiography and even film-cassette system.

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

Effect of Nitrogen Impurity on Process Design of $CO_2$ Marine Geological Storage: Evaluation of Equation of State and Optimization of Binary Parameter (질소 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태방정식의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.217-226
    • /
    • 2009
  • Marine geological storage of $CO_2$ is regarded as one of the most promising options to response climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_x$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of the present paper is to compare and analyse the relevant equations of state including PR, PRBM, RKS and SRK equation of state for $CO_2-N_2$ mixture. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $N_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable equation of state and relevant binary parameter in designing the $CO_2-N_2$ mixture marine geological storage process.

  • PDF

The Flow-rate Measurements in a Multi-phase Flow Pipeline by Using a Clamp-on Sealed Radioisotope Cross Correlation Flowmeter (투과 감마선 계측신호의 Cross correlation 기법 적용에 의한 다중상 유체의 유량측정)

  • Kim, Jin-Seop;Kim, Jong-Bum;Kim, Jae-Ho;Lee, Na-Young;Jung, Sung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • The flow rate measurements in a multi-phase flow pipeline were evaluated quantitatively by means of a clamp-on sealed radioisotope based on a cross correlation signal processing technique. The flow rates were calculated by a determination of the transit time between two sealed gamma sources by using a cross correlation function following FFT filtering, then corrected with vapor fraction in the pipeline which was measured by the ${\gamma}$-ray attenuation method. The pipeline model was manufactured by acrylic resin(ID. 8 cm, L=3.5 m, t=10 mm), and the multi-phase flow patterns were realized by an injection of compressed $N_2$ gas. Two sealed gamma sources of $^{137}Cs$ (E=0.662 MeV, ${\Gamma}$ $factor=0.326\;R{\cdot}h^{-1}{\cdot}m^2{\cdot}Ci^{-1}$) of 20 mCi and 17 mCi, and radiation detectors of $2"{\times}2"$ NaI(Tl) scintillation counter (Eberline, SP-3) were used for this study. Under the given conditions(the distance between two sources: 4D(D; inner diameter), N/S ratio: $0.12{\sim}0.15$, sampling time ${\Delta}t$: 4msec), the measured flow rates showed the maximum. relative error of 1.7 % when compared to the real ones through the vapor content corrections($6.1\;%{\sim}9.2\;%$). From a subsequent experiment, it was proven that the closer the distance between the two sealed sources is, the more precise the measured flow rates are. Provided additional studies related to the selection of radioisotopes their activity, and an optimization of the experimental geometry are carried out, it is anticipated that a radioisotope application for flow rate measurements can be used as an important tool for monitoring multi-phase facilities belonging to petrochemical and refinery industries and contributes economically in the light of maintenance and control of them.

K-DEV: A Borehole Deviation Logging Probe Applicable to Steel-cased Holes (철재 케이싱이 설치된 시추공에서도 적용가능한 공곡검층기 K-DEV)

  • Yoonho, Song;Yeonguk, Jo;Seungdo, Kim;Tae Jong, Lee;Myungsun, Kim;In-Hwa, Park;Heuisoon, Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • We designed a borehole deviation survey tool applicable for steel-cased holes, K-DEV, and developed a prototype for a depth of 500 m aiming to development of own equipment required to secure deep subsurface characterization technologies. K-DEV is equipped with sensors that provide digital output with verified high performance; moreover, it is also compatible with logging winch systems used in Korea. The K-DEV prototype has a nonmagnetic stainless steel housing with an outer diameter of 48.3 mm, which has been tested in the laboratory for water resistance up to 20 MPa and for durability by running into a 1-km deep borehole. We confirmed the operational stability and data repeatability of the prototype by constantly logging up and down to the depth of 600 m. A high-precision micro-electro-mechanical system (MEMS) gyroscope was used for the K-DEV prototype as the gyro sensor, which is crucial for azimuth determination in cased holes. Additionally, we devised an accurate trajectory survey algorithm by employing Unscented Kalman filtering and data fusion for optimization. The borehole test with K-DEV and a commercial logging tool produced sufficiently similar results. Furthermore, the issue of error accumulation due to drift over time of the MEMS gyro was successfully overcome by compensating with stationary measurements for the same attitude at the wellhead before and after logging, as demonstrated by the nearly identical result to the open hole. We believe that the methodology of K-DEV development and operational stability, as well as the data reliability of the prototype, were confirmed through these test applications.

A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce (사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석)

  • Chae, Seung Hoon;Lim, Jay Ick;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.53-77
    • /
    • 2015
  • Mobile commerce provides a convenient shopping experience in which users can buy products without the constraints of time and space. Mobile commerce has already set off a mega trend in Korea. The market size is estimated at approximately 15 trillion won (KRW) for 2015, thus far. In the Korean market, social commerce and open market are key components. Social commerce has an overwhelming open market in terms of the number of users in the Korean mobile commerce market. From the point of view of the industry, quick market entry, and content curation are considered to be the major success factors, reflecting the rapid growth of social commerce in the market. However, academics' empirical research and analysis to prove the success rate of social commerce is still insufficient. Henceforward, it is to be expected that social commerce and the open market in the Korean mobile commerce will compete intensively. So it is important to conduct an empirical analysis to prove the differences in user experience between social commerce and open market. This paper is an exploratory study that shows a comparative analysis of social commerce and the open market regarding user experience, which is based on the mobile users' reviews. Firstly, this study includes a collection of approximately 10,000 user reviews of social commerce and open market listed Google play. A collection of mobile user reviews were classified into topics, such as perceived usefulness and perceived ease of use through LDA topic modeling. Then, a sentimental analysis and co-occurrence analysis on the topics of perceived usefulness and perceived ease of use was conducted. The study's results demonstrated that social commerce users have a more positive experience in terms of service usefulness and convenience versus open market in the mobile commerce market. Social commerce has provided positive user experiences to mobile users in terms of service areas, like 'delivery,' 'coupon,' and 'discount,' while open market has been faced with user complaints in terms of technical problems and inconveniences like 'login error,' 'view details,' and 'stoppage.' This result has shown that social commerce has a good performance in terms of user service experience, since the aggressive marketing campaign conducted and there have been investments in building logistics infrastructure. However, the open market still has mobile optimization problems, since the open market in mobile commerce still has not resolved user complaints and inconveniences from technical problems. This study presents an exploratory research method used to analyze user experience by utilizing an empirical approach to user reviews. In contrast to previous studies, which conducted surveys to analyze user experience, this study was conducted by using empirical analysis that incorporates user reviews for reflecting users' vivid and actual experiences. Specifically, by using an LDA topic model and TAM this study presents its methodology, which shows an analysis of user reviews that are effective due to the method of dividing user reviews into service areas and technical areas from a new perspective. The methodology of this study has not only proven the differences in user experience between social commerce and open market, but also has provided a deep understanding of user experience in Korean mobile commerce. In addition, the results of this study have important implications on social commerce and open market by proving that user insights can be utilized in establishing competitive and groundbreaking strategies in the market. The limitations and research direction for follow-up studies are as follows. In a follow-up study, it will be required to design a more elaborate technique of the text analysis. This study could not clearly refine the user reviews, even though the ones online have inherent typos and mistakes. This study has proven that the user reviews are an invaluable source to analyze user experience. The methodology of this study can be expected to further expand comparative research of services using user reviews. Even at this moment, users around the world are posting their reviews about service experiences after using the mobile game, commerce, and messenger applications.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.