• 제목/요약/키워드: error motion

검색결과 1,368건 처리시간 0.028초

혼합축차이점법을 이용한 진직도 정밀측정에 있어서 센서 게인오차의 영향에 관한 연구 (A Study on the Effect of the Sensor Gain Error in the Precision Measurement of Straightness Error Using Mixed Sequential Two-Probe Method)

  • 정지훈;오정석;김경호;박천홍
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.607-614
    • /
    • 2013
  • In this study, effect of the sensor gain error is theoretically analyzed and simulated when mixed sequential two-prove method(MTPM) is applied for the precision measurement of straightness error of a linear motion table. According to the theoretical analysis, difference of the gain errors between two displacement sensors increases measurement error dramatically and alignment error of the straightedge is also amplified by the sensor gain difference. On the other hand, if the gain errors of the two sensors are identical, most of error terms are cancelled out and the alignment error doesn't give any influence on the measurement error. Also the measurement error of the straightness error is minimized compared with that of the straightedge's form error owing to close relationship between straightness error and angular motion error of the table in the error terms.

링레이저 자이로 관성항법시스템의 비교환 오차 해석 (Noncommutativity Error Analysis with RLG-based INS)

  • 김광진;박찬국;유명종
    • 한국항공우주학회지
    • /
    • 제34권1호
    • /
    • pp.81-88
    • /
    • 2006
  • 본 논문에서는 RLG를 사용하는 관성항법시스템에서 자이로 출력의 적분 과정에서 유발되는 비교환 오차를 정의하고 이에 대한 해석을 수행한다. 이를 위하여 RLG를 사용하는 관성항법시스템에 나타나는 진동성 운동, 원추운동, AV 마운트에 의하여 유발되는 ISA 운동, 항체의 실제 운동 등을 살펴보고, 각각의 운동에 의하여 유발되는 비교환 오차를 해석한다. 비교환 오차 해석은 회전벡터와 자이로 출력 사이의 관계식과 좌표변환행렬과 각속도 벡터 사이의 관계식을 이용하여 유도된다.

유정압테이블 수정가공 알고리즘의 실험적 검증 (Experimental Verification on Corrective machining Algorithm of Hydrostatic Table)

  • 박천홍;이찬홍;이후상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.425-428
    • /
    • 1997
  • Effectiveness of corrective machining algorithm is verified experimentally in this paper by performing corrective lapping work to single side and double sides hydrostatic tables. Lapping is applied as machining method. Machining information is calculated from measured motion errors by applying the algorithm, without information on rail profile. It is possible to acquire 0.13pm of linear motion error, 1.40arcsec of angular motion error in the case of single side table, and 0.07pm of linear motion error, 1.42arcsec of angular motion error in the case of double sides table. The experiment is performed by the unskilled person after he experienced a little of preliminary machining. Experimental results show that corrective machining algorithm is very effective, and anyone can improve the accuracy of hydrostatic table by using the algorithm.

  • PDF

Fuzzy Logic Based Temporal Error Concealment for H.264 Video

  • Lee, Pei-Jun;Lin, Ming-Long
    • ETRI Journal
    • /
    • 제28권5호
    • /
    • pp.574-582
    • /
    • 2006
  • In this paper, a new error concealment algorithm is proposed for the H.264 standard. The algorithm consists of two processes. The first process uses a fuzzy logic method to select the size type of lost blocks. The motion vector of a lost block is calculated from the current frame, if the motion vectors of the neighboring blocks surrounding the lost block are discontinuous. Otherwise, the size type of the lost block can be determined from the preceding frame. The second process is an error concealment algorithm via a proposed adapted multiple-reference-frames selection for finding the lost motion vector. The adapted multiple-reference-frames selection is based on the motion estimation analysis of H.264 coding so that the number of searched frames can be reduced. Therefore the most accurate mode of the lost block can be determined with much less computation time in the selection of the lost motion vector. Experimental results show that the proposed algorithm achieves from 0.5 to 4.52 dB improvement when compared to the method in VM 9.0.

  • PDF

평면도 기상 측정 방법 개발 (Development of On-machine Flatness Measurement Method)

  • 장문주;홍성욱
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.187-193
    • /
    • 2003
  • This paper presents an on-machine measurement method of flatness error fur surface machining processes. There are two kinds of on-machine measurement methods available to measure flatness errors in workpieces: i.e., surface scanning method and sensor scanning method. However, motion errors are often engaged in both methods. This paper proposes an idea to realize a measurement system of flatness errors and its rigorous application for estimation of motion errors of the positioning system. The measurement system is made by modifying the straightness measurement system, which consists of a laser, a CCD camera and processing system, a sensor head, and some optical units. The sensor head is composed of a retroreflector, a ball and ball socket, a linear motion guide unit and adjustable arms. The experimental .results show that the proposed method is useful to identify flatness errors of machined workpieces as well as motion errors of positioning systems.

Development of an Ultra Precision Hydrostatic Guideway Driven by a Coreless Linear Motor

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.55-60
    • /
    • 2005
  • In order to develop the hydrostatic guideways driven by a core less linear motor for ultra precision machine tools, a prototype of guideway is designed and tested. A coreless linear DC motor with a continuous force of 156 N and a laser scale with a resolution of 0.01 ㎛ are used in the system. Experimental analysis on the static stiffness, motion errors, positioning error and its repeatability, micro step response and velocity variation of the guideway are performed. The guideway shows infinite stiffness within 50 N applied load in the feed direction, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ㎛ linear motion error and 0.1 arcsec angular motion error are acquired. The guideway also reveals 0.21 ㎛ positioning error and 0.09 ㎛ repeatability, and it shows stable responses following a 0.01 ㎛ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is estimated that the hydrostatic guideway driven by a coreless linear motor is very useful for the ultra precision machine tools.

유정압안내면 운동오차보정용 능동제어모세관의 기본특성 (Basic Characteristics of an Active Controlled Capillary for Compensating the Error Motion of Hydrostatic Guideways)

  • 송영찬;박천홍;이후상;김수태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.662-667
    • /
    • 1996
  • For compensating the error motion of hydrostatic guideways, the structure and the theoretical design method of ACC(Active Controlled Capillary) are proposed. The maximum controllable range, micro step response and dynamic characteristics of ACC are analyzed experimentally for verifing the availability. The experimental results showed that by the use of ACC, the error motion within 2.7${\mu}{\textrm}{m}$ of a hydrostatic guideway can be compensated with the resolution of 27nm, 1/100 of uncontolled error, and the frequency band of 5.5Hz. From these results, it Is confirmed that the ACC is very effect to improve the moving accuracy of high or ultra precision hydrostatic guideways.

  • PDF

화질 향상을 위한 오류 은폐 기법 (Error Concealment Techniques for Visual Quality Improving)

  • 서재원
    • 한국콘텐츠학회논문지
    • /
    • 제6권2호
    • /
    • pp.65-74
    • /
    • 2006
  • MPEG-2 비디오 압축열은 복잡한 부호화 알고리즘을 이용하여 압축하기 때문에 전송 오류에 매우 민감하다. 만약 패킷을 잃어버리거나 수신된 패킷에 오류가 있으면 현재 화면에 화질저하가 발생할 뿐만 아니라 화면수가 제한적이긴 하지만 뒤이어서 재생되는 화면에도 오류가 전파된다. 따라서 이런 전송오류의 영향을 막거나 최소화 하기위해서 다양한 오류 강인 부호화/복호화를 적용한다. 대표적인 오류 강인 방법이 오류 은폐 기법이다. 오류 은폐 기법은 손상된 비디오 데이터를 은폐하기 위해서 정상적으로 수신된 데이터의 공간적, 시간적 중복성을 이용한다. 손상된 데이터를 복원하기 위해 움직임 벡터를 추정하고 움직임 보상하는 것은 좋은 방법이다. 이 논문에서는 다양한 움직임 벡터 복원 방법에 기반한 오류 은폐 기법을 제안하고 일반적인 방법들과 성능을 비교한다.

  • PDF

원호보간시험에 의한 수치제어 공작기계의 운동오차원인 진단에 관한 연구 (Identification of motion error sources in NC machine tools by a circular interpolation test)

  • 홍성욱;신영재;이후상
    • 한국정밀공학회지
    • /
    • 제10권2호
    • /
    • pp.126-137
    • /
    • 1993
  • This paper presents an efficient method for the identification of motion error sources in NC machine tools by making use of the circular interpolation test, which is often used in estimating the motion accuracy of NC machine tools. Mathematical formulae are described for motion errors due to various kinds of error sources. Two identification formulae are proposed: one is based on the frequency analysis and the other is formulated with the weithted residual method. Motion error signal is classified into two patterns, mean errors(mean of CW and CCW test signals from mean errors). The sources of the mean errors are identified by using the frequency analysis technique and the sources of the deviation errors by the weighted residual formulaltion. A menu driven, user oriented, computer program is written to realize the full steps of the proposed identificationprocedure. Then, the identification method is applied to two NC machine tools.

  • PDF

형상 재 설계에 의한 공작기계 기하오차 보정 (Geometric error compensation of machine tools by geometry redesign)

  • 서성교
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.367-372
    • /
    • 2000
  • Accuracy of a machined component is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the accuracy of this relative motion is the geometric error of machine tools. In this study, geometric error is modeled using form shaping motion of machine tool, where a form shaping function is derived from the homogeneous transformation matrix. Geometric errors are measured by laser interferometer. After that, the local positioning error can be estimated from the form shaping model and geometric error data base. From this information, we can remodel the part by shifting the design surface to the amount of positional error. By generating tool path to the redesigned surface, we can reduce the machining error.

  • PDF