• 제목/요약/키워드: error motion

검색결과 1,365건 처리시간 0.03초

실시간 하이브리드 실험법을 이용한 대형 MR감쇠기의 제진 성능평가 (Performance Evaluation of a Large-scale MR Damper for Controlling Seismic Responses Using a Real-time Hybrid Test Method)

  • 박은천;이성경;윤경조;정희산;이헌재;최강민;문석준;정형조;민경원
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.131-138
    • /
    • 2008
  • This paper presents real-time hybrid test method of large-scale MR damper applied to a building structure under seismic excitation. The real-time hybrid test using an actuator for the control performance evaluation of a MR damper controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a large-scale MR damper adopted as an experimental part was installed to reduce its response. At first, the force that is acting between a MR damper and building structure is measured from the load cell attached on the actuator system and is fed-back to the computer to control the motion of the actuator. Then, the actuator is so driven that the error between the interface displacement computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the actuator. The control efficiency of the MR damper used in this paper is experimentally confirmed by implementing this process of experiment on real-time.

LED칩 제조용 다이 본더의 전산 설계 및 해석에 대한 연구 (A Study on the Computational Design and Analysis of a Die Bonder for LED Chip Fabrication)

  • 조용규;이정원;하석재;조명우;최원호
    • 한국산학기술학회논문지
    • /
    • 제13권8호
    • /
    • pp.3301-3306
    • /
    • 2012
  • LED 칩 패키징에서 다이 본딩은 분할된 칩을 리드 프레임에 고정시켜 칩이 이후 공정을 견딜 수 있도록 충분한 강도를 제공하는 중요한 공정이다. 기존의 다이 본더의 픽업 장치는 단순히 콜렛의 하강 동작과 이젝터 핀의 상승 동작만으로 구동되어 픽업 장치와 다이가 접촉하는 순간 충격에 의한 다이의 손상과 위치 정렬 오차에 대한 문제점이 발생한다. 본 연구에서는 위치 정렬 에러 및 다이의 손상을 최소화시키기 위하여 고정밀, 고속 이송이 가능한 픽업 헤드를 사용한 다이 본더 시스템을 개발하였다. 구조적 안정성을 평가하기 위해 다이 본더의 유한요소모델을 생성하였고 구조 해석을 수행하였다. 그다음, 다이 본더의 작동 주파수에 대해 픽업 헤드의 유한요소모델을 이용하여 진동해석을 수행하였다. 해석 결과, 다이 본더에 작용하는 응력 및 변위, 고유진동수에 대해 분석하였고 개발된 시스템의 구조적 안정성에 대해 확인하였다.

묵시적 제한방법을 이용한 옷 모델링 방법 (Cloth Modeling using Implicit Constraint Enforcement)

  • 홍민;이승현;박두순
    • 한국멀티미디어학회논문지
    • /
    • 제11권4호
    • /
    • pp.516-524
    • /
    • 2008
  • 본 논문은 기존에 연구되지 않았던 옷의 독특한 특징들을 묵시적 제한방법을 사용하여 강력한 제한력으로 구현하는 새로운 모델링 방법을 제안한다. 기존의 명시적 제한방법인 Baumgarte 안정화 방법은 해에 빠르게 수렴하도록 하기 위해 사용자가 시뮬레이션에 따라서 값이 달라지는 안정화 변수 값을 선택해야 하고, 시뮬레이션의 시간 간격 사용에 있어서 안정화에 한계가 있는 단점들이 있다. 본 논문은 큰 시간 간격에도 안정적이고, 안정화 변수 값을 요구하지 않고, 물리적으로도 적합한 물체의 움직임을 보장하는 묵시적 제한방법을 사용한다. 또한 묵시적 제한 방법의 계산 복잡도는 Baumgarte 안정화 방법과 같다. 본 논문은 묵시적 제한방법의 수식과 제한의 오차 분석을 설명하였고 옷의 솔기, 단추, 옷 주름, 옷의 구김, 과잉 늘어짐 방지 등의 복잡한 옷의 요소들에 대한 모델링 방법을 제시하였다. 본 논문에서 제안된 방법은 외부 상황에 의해 각종 제한들이 자동적으로 설정되고 제거되어 계산 비용을 절약함과 동시에 옷의 독특한 특징들의 구현을 통해 현실감 있는 옷 시뮬레이션의 결과들을 얻었다.

  • PDF

장거리 영상기반 변위계측 시스템 검증 (Verification of Long-distance Vision-based Displacement Measurement System)

  • 김홍진;허석재;신승훈
    • 대한건축학회연합논문집
    • /
    • 제20권6호
    • /
    • pp.47-54
    • /
    • 2018
  • The purpose of this study is to verify the long - range measurement performance for practical field application of VDMS. The reliability of the VDMS was verified by comparison with the existing monitoring sensor, GPS, Accelerometer and LDS. It showed the ability to accurately measure the dynamic displacement by tracking a motion of free vibration of target. And using the PSD function of measured data, the results in the frequency domain were also analyzed. We judged that VDMS is able to identify the higher system mode and has sufficient reliability. Based on the reliability verification, we conducted tests for long-distance applicability for actual application of VDMS. The distance from the stationary target model structure was increased by 50m interval, and the maximum distance was set to 400m. From the distance of 150m, the image obtained by the commercial camcorder has an error in the analysis, so the measured displacement comparison was performed between the LDS and the refractor telescope measurement results. In the measurement results of the displacement area of VDMS, the data validity was deteriorated due to the data shift by the external force and the quality degradation of the enlarged image. However, even under the condition that the effectiveness of the displacement measurement data of VDMS is low, the first mode characteristic included in the free vibration of the object is clearly measured. If the influence from the external environment is controlled and stable data is collected, It is judged that reliability of long-distance VDMS can be secured.

UAS 및 지상 LiDAR 융합기반 건축물의 3D 재현 (3D Reconstruction of Structure Fusion-Based on UAS and Terrestrial LiDAR)

  • 한승희;강준오;오성종;이용창
    • 도시과학
    • /
    • 제7권2호
    • /
    • pp.53-60
    • /
    • 2018
  • Digital Twin is a technology that creates a photocopy of real-world objects on a computer and analyzes the past and present operational status by fusing the structure, context, and operation of various physical systems with property information, and predicts the future society's countermeasures. In particular, 3D rendering technology (UAS, LiDAR, GNSS, etc.) is a core technology in digital twin. so, the research and application are actively performed in the industry in recent years. However, UAS (Unmanned Aerial System) and LiDAR (Light Detection And Ranging) have to be solved by compensating blind spot which is not reconstructed according to the object shape. In addition, the terrestrial LiDAR can acquire the point cloud of the object more precisely and quickly at a short distance, but a blind spot is generated at the upper part of the object, thereby imposing restrictions on the forward digital twin modeling. The UAS is capable of modeling a specific range of objects with high accuracy by using high resolution images at low altitudes, and has the advantage of generating a high density point group based on SfM (Structure-from-Motion) image analysis technology. However, It is relatively far from the target LiDAR than the terrestrial LiDAR, and it takes time to analyze the image. In particular, it is necessary to reduce the accuracy of the side part and compensate the blind spot. By re-optimizing it after fusion with UAS and Terrestrial LiDAR, the residual error of each modeling method was compensated and the mutual correction result was obtained. The accuracy of fusion-based 3D model is less than 1cm and it is expected to be useful for digital twin construction.

Characterizing nonlinear oscillation behavior of an MRF variable rotational stiffness device

  • Yu, Yang;Li, Yancheng;Li, Jianchun;Gu, Xiaoyu
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.303-317
    • /
    • 2019
  • Magneto-rheological fluid (MRF) rotatory dampers are normally used for controlling the constant rotation of machines and engines. In this research, such a device is proposed to act as variable stiffness device to alleviate the rotational oscillation existing in the many engineering applications, such as motor. Under such thought, the main purpose of this work is to characterize the nonlinear torque-angular displacement/angular velocity responses of an MRF based variable stiffness device in oscillatory motion. A rotational hysteresis model, consisting of a rotatory spring, a rotatory viscous damping element and an error function-based hysteresis element, is proposed, which is capable of describing the unique dynamical characteristics of this smart device. To estimate the optimal model parameters, a modified whale optimization algorithm (MWOA) is employed on the captured experimental data of torque, angular displacement and angular velocity under various excitation conditions. In MWOA, a nonlinear algorithm parameter updating mechanism is adopted to replace the traditional linear one, enhancing the global search ability initially and the local search ability at the later stage of the algorithm evolution. Additionally, the immune operation is introduced in the whale individual selection, improving the identification accuracy of solution. Finally, the dynamic testing results are used to validate the performance of the proposed model and the effectiveness of the proposed optimization algorithm.

Integrity Assessment and Verification Procedure of Angle-only Data for Low Earth Orbit Space Objects with Optical Wide-field PatroL-Network (OWL-Net)

  • Choi, Jin;Jo, Jung Hyun;Kim, Sooyoung;Yim, Hong-Suh;Choi, Eun-Jung;Roh, Dong-Goo;Kim, Myung-Jin;Park, Jang-Hyun;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권1호
    • /
    • pp.35-43
    • /
    • 2019
  • The Optical Wide-field patroL-Network (OWL-Net) is a global optical network for Space Situational Awareness in Korea. The primary operational goal of the OWL-Net is to track Low Earth Orbit (LEO) satellites operated by Korea and to monitor the Geostationary Earth Orbit (GEO) region near the Korean peninsula. To obtain dense measurements on LEO tracking, the chopper system was adopted in the OWL-Net's back-end system. Dozens of angle-only measurements can be obtained for a single shot with the observation mode for LEO tracking. In previous work, the reduction process of the LEO tracking data was presented, along with the mechanical specification of the back-end system of the OWL-Net. In this research, we describe an integrity assessment method of time-position matching and verification of results from real observations of LEO satellites. The change rate of the angle of each streak in the shot was checked to assess the results of the matching process. The time error due to the chopper rotation motion was corrected after re-matching of time and position. The corrected measurements were compared with the simulated observation data, which were taken from the Consolidated Prediction File from the International Laser Ranging Service. The comparison results are presented in the In-track and Cross-track frame.

Denoise of Astronomical Images with Deep Learning

  • Park, Youngjun;Choi, Yun-Young;Moon, Yong-Jae;Park, Eunsu;Lim, Beomdu;Kim, Taeyoung
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.54.2-54.2
    • /
    • 2019
  • Removing noise which occurs inevitably when taking image data has been a big concern. There is a way to raise signal-to-noise ratio and it is regarded as the only way, image stacking. Image stacking is averaging or just adding all pixel values of multiple pictures taken of a specific area. Its performance and reliability are unquestioned, but its weaknesses are also evident. Object with fast proper motion can be vanished, and most of all, it takes too long time. So if we can handle single shot image well and achieve similar performance, we can overcome those weaknesses. Recent developments in deep learning have enabled things that were not possible with former algorithm-based programming. One of the things is generating data with more information from data with less information. As a part of that, we reproduced stacked image from single shot image using a kind of deep learning, conditional generative adversarial network (cGAN). r-band camcol2 south data were used from SDSS Stripe 82 data. From all fields, image data which is stacked with only 22 individual images and, as a pair of stacked image, single pass data which were included in all stacked image were used. All used fields are cut in $128{\times}128$ pixel size, so total number of image is 17930. 14234 pairs of all images were used for training cGAN and 3696 pairs were used for verify the result. As a result, RMS error of pixel values between generated data from the best condition and target data were $7.67{\times}10^{-4}$ compared to original input data, $1.24{\times}10^{-3}$. We also applied to a few test galaxy images and generated images were similar to stacked images qualitatively compared to other de-noising methods. In addition, with photometry, The number count of stacked-cGAN matched sources is larger than that of single pass-stacked one, especially for fainter objects. Also, magnitude completeness became better in fainter objects. With this work, it is possible to observe reliably 1 magnitude fainter object.

  • PDF

In-House Developed Surface-Guided Repositioning and Monitoring System to Complement In-Room Patient Positioning System for Spine Radiosurgery

  • Kim, Kwang Hyeon;Lee, Haenghwa;Sohn, Moon-Jun;Mun, Chi-Woong
    • 한국의학물리학회지:의학물리
    • /
    • 제32권2호
    • /
    • pp.40-49
    • /
    • 2021
  • Purpose: This study aimed to develop a surface-guided radiosurgery system customized for a neurosurgery clinic that could be used as an auxiliary system for improving the accuracy, monitoring the movements of patients while performing hypofractionated radiosurgery, and minimizing the geometric misses. Methods: RGB-D cameras were installed in the treatment room and a monitoring system was constructed to perform a three-dimensional (3D) scan of the body surface of the patient and to express it as a point cloud. This could be used to confirm the exact position of the body of the patient and monitor their movements during radiosurgery. The image from the system was matched with the computed tomography (CT) image, and the positional accuracy was compared and analyzed in relation to the existing system to evaluate the accuracy of the setup. Results: The user interface was configured to register the patient and display the setup image to position the setup location by matching the 3D points on the body of the patient with the CT image. The error rate for the position difference was within 1-mm distance (min, -0.21 mm; max, 0.63 mm). Compared with the existing system, the differences were found to be as follows: x=0.08 mm, y=0.13 mm, and z=0.26 mm. Conclusions: We developed a surface-guided repositioning and monitoring system that can be customized and applied in a radiation surgery environment with an existing linear accelerator. It was confirmed that this system could be easily applied for accurate patient repositioning and inter-treatment motion monitoring.

Development and Characterization of an Atmospheric Turbulence Simulator Using Two Rotating Phase Plates

  • Joo, Ji Yong;Han, Seok Gi;Lee, Jun Ho;Rhee, Hyug-Gyo;Huh, Joon;Lee, Kihun;Park, Sang Yeong
    • Current Optics and Photonics
    • /
    • 제6권5호
    • /
    • pp.445-452
    • /
    • 2022
  • We developed an adaptive optics test bench using an optical simulator and two rotating phase plates that mimicked the atmospheric turbulence at Bohyunsan Observatory. The observatory was reported to have a Fried parameter with a mean value of 85 mm and standard deviation of 13 mm, often expressed as 85 ± 13 mm. First, we fabricated several phase plates to generate realistic atmospheric-like turbulence. Then, we selected a pair from among the fabricated phase plates to emulate the atmospheric turbulence at the site. The result was 83 ± 11 mm. To address dynamic behavior, we emulated the atmospheric disturbance produced by a wind flow of 8.3 m/s by controlling the rotational speed of the phase plates. Finally, we investigated how closely the atmospheric disturbance simulation emulated reality with an investigation of the measurements on the optical table. The verification confirmed that the simulator showed a Fried parameter of 87 ± 15 mm as designed, but a little slower wind velocity (7.5 ± 2.5 m/s) than expected. This was because of the nonlinear motion of the phase plates. In conclusion, we successfully mimicked the atmospheric disturbance of Bohyunsan Observatory with an error of less than 10% in terms of Fried parameter and wind velocity.