• Title/Summary/Keyword: error model inertial sensor

Search Result 38, Processing Time 0.026 seconds

GPS/INS Integration using Fuzzy-based Kalman Filtering

  • Lim, Jung-Hyun;Ju, Gwang-Hyeok;Yoo, Chang-Sun;Hong, Sung-Kyung;Kwon, Tae-Yong;Ahn, Iee-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.984-989
    • /
    • 2003
  • The integrated global position system (GPS) and inertial navigation system (INS) has been considered as a cost-effective way of providing an accurate and reliable navigation system for civil and military system. Even the integration of a navigation sensor as a supporting device requires the development of non-traditional approaches and algorithms. The objective of this paper is to assess the feasibility of integrated with GPS and INS information, to provide the navigation capability for long term accuracy of the integrated system. Advanced algorithms are used to integrate the GPS and INS sensor data. That is fuzzy inference system based Weighted Extended Kalman Filter(FWEKF) algorithm INS signal corrections to provided an accurate navigation system of the integrated GPS and INS. Repeatedly, these include INS error, calculated platform corrections using GPS outputs, velocity corrections, position correction and error model estimation for prediction. Therefore, the paper introduces the newly developed technology which is aimed at achieving high accuracy results with integrated system. Finally, in this paper are given the results of simulation tests of the integrated system and the results show very good performance

  • PDF

A EM-Log Aided Navigation Filter Design for Maritime Environment (해상환경용 EM-Log 보정항법 필터 설계)

  • Jo, Minsu
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.198-204
    • /
    • 2020
  • This paper designs a electromagnetic-log (EM-Log) aided navigation filter for maritime environment without global navigation satellite system (GNSS). When navigation is performed for a long time, Inertial navigation system (INS)'s error gradually diverges. Therefore, an integrated navigation method is used to solve this problem. EM-Log sensor measures the velocity of the vehicle. However, since the measured velocity from EM-Log contains the speed of the sea current, the aided navigation filter is required to estimate the sea current. This paper proposes a single model filter and interacting multiple (IMM) model filter methods to estimate the sea current and analyzes the influence of the sea current model on the filter. The performance of the designed aided navigation filter is verified using a simulation and the improvement rate of the filter compared to the pure navigation is analyzed. The performance of single model filter is improved when the sea current model is correct. However, when the sea current model is incorrect, the performance decreases. On the other hands, IMM model filter methods show the stable performance compared to the single model.

Precision Analysis of NARX-based Vehicle Positioning Algorithm in GNSS Disconnected Area

  • Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.289-295
    • /
    • 2021
  • Recently, owing to the development of autonomous vehicles, research on precisely determining the position of a moving object has been actively conducted. Previous research mainly used the fusion of GNSS/IMU (Global Positioning System / Inertial Navigation System) and sensors attached to the vehicle through a Kalman filter. However, in recent years, new technologies have been used to determine the location of a moving object owing to the improvement in computing power and the advent of deep learning. Various techniques using RNN (Recurrent Neural Network), LSTM (Long Short-Term Memory), and NARX (Nonlinear Auto-Regressive eXogenous model) exist for such learning-based positioning methods. The purpose of this study is to compare the precision of existing filter-based sensor fusion technology and the NARX-based method in case of GNSS signal blockages using simulation data. When the filter-based sensor integration technology was used, an average horizontal position error of 112.8 m occurred during 60 seconds of GNSS signal outages. The same experiment was performed 100 times using the NARX. Among them, an improvement in precision was confirmed in approximately 20% of the experimental results. The horizontal position accuracy was 22.65 m, which was confirmed to be better than that of the filter-based fusion technique.

Design of AHRS using Low-Cost MEMS IMU Sensor and Multiple Filters (저가형 MEMS IMU센서와 다중필터를 활용한 AHRS 설계)

  • Jang, Woojin;Park, Chansik
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.1
    • /
    • pp.177-186
    • /
    • 2017
  • Recently, Autonomous vehicles are getting hot attention. Amazon, the biggest online shopping service provider is developing a delivery system that uses drones. This kinds of platforms are need accurate attitude information for navigation. In this paper, a structure design of AHRS using low-cost inertia sensor is proposed. To estimate attitudes a Kalman filter which uses a quaternion based dynamic model, bias-removed measurements from MEMS Gyro, raw measurements from MEMS accelerometer and magnetometer, is designed. To remove bias from MEMS Gyro, an additional Kalman filter which uses raw Gyro measurements and attitude estimates, is designed. The performance of implemented AHRS is compared with high price off-the-shelf 3DM-GX3-25 AHRS from Microstrain. The Gyro bias was estimated within 0.0001[deg/s]. And from the estimated attitude, roll and pitch angle error is smaller than 0.2 and 0.3 degree. Yaw angle error is smaller than 6 degree.

A Design of the IMM Filter for Improving Position Error of the INS / GPS Integrated System (INS/GPS 통합 항법 시스템의 위치 오차 개선을 위한 IMM 필터 설계)

  • Baek, Seung-jun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2019
  • In this paper, interacting multiple model (IMM) filter was designed that guarantees a stable navigation performance even in the unstable satellite navigation position. In order to design IMM filter in INS / GPS integrated navigation system, sub filter of the IMM filter is defined as Kalman filter. In the IMM filter configuration, two subfilters are determined. Each Kalman filter defines the six-teenth state composed of position, velocity, attitude, and sensor error from the INS error equation and the states additionally derived in case of the coloured measurement noise. In order to verify the performance of the proposed filter, we compared the performance how the filter works in the presence of arbitrary error in GPS navigation solution. The Monte Carlo simulation was performed 100 times and the results were compared with the root mean square(RMS). The results show that the proposed method is stable against errors and show fast convergence.

Physical Offset of UAVs Calibration Method for Multi-sensor Fusion (다중 센서 융합을 위한 무인항공기 물리 오프셋 검보정 방법)

  • Kim, Cheolwook;Lim, Pyeong-chae;Chi, Junhwa;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1125-1139
    • /
    • 2022
  • In an unmanned aerial vehicles (UAVs) system, a physical offset can be existed between the global positioning system/inertial measurement unit (GPS/IMU) sensor and the observation sensor such as a hyperspectral sensor, and a lidar sensor. As a result of the physical offset, a misalignment between each image can be occurred along with a flight direction. In particular, in a case of multi-sensor system, an observation sensor has to be replaced regularly to equip another observation sensor, and then, a high cost should be paid to acquire a calibration parameter. In this study, we establish a precise sensor model equation to apply for a multiple sensor in common and propose an independent physical offset estimation method. The proposed method consists of 3 steps. Firstly, we define an appropriate rotation matrix for our system, and an initial sensor model equation for direct-georeferencing. Next, an observation equation for the physical offset estimation is established by extracting a corresponding point between a ground control point and the observed data from a sensor. Finally, the physical offset is estimated based on the observed data, and the precise sensor model equation is established by applying the estimated parameters to the initial sensor model equation. 4 region's datasets(Jeon-ju, Incheon, Alaska, Norway) with a different latitude, longitude were compared to analyze the effects of the calibration parameter. We confirmed that a misalignment between images were adjusted after applying for the physical offset in the sensor model equation. An absolute position accuracy was analyzed in the Incheon dataset, compared to a ground control point. For the hyperspectral image, root mean square error (RMSE) for X, Y direction was calculated for 0.12 m, and for the point cloud, RMSE was calculated for 0.03 m. Furthermore, a relative position accuracy for a specific point between the adjusted point cloud and the hyperspectral images were also analyzed for 0.07 m, so we confirmed that a precise data mapping is available for an observation without a ground control point through the proposed estimation method, and we also confirmed a possibility of multi-sensor fusion. From this study, we expect that a flexible multi-sensor platform system can be operated through the independent parameter estimation method with an economic cost saving.

Vehicular Pitch Estimation Algorithm with ACF/IMMKF Based on GPS/IMU/OBD Data Fusion (GPS/IMU/OBD 융합기반 ACF/IMMKF를 이용한 차량 Pitch 추정 알고리즘)

  • Kim, Ju-won;Lee, Myung-su;Lee, Sang-sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1837-1845
    • /
    • 2015
  • The longitudinal velocity is necessary for accurate vehicular positioning in urban environment. The pitch angle, which is a road slope, should be calculated to acquire the longitudinal velocity. However, it is impossible to consider very accurate pitch, when using a sensor and an algorithm. That's why process noise and positioning stimation error of IMU should be adjusted to the driving environment and fuse GPS, OBD data with ACF which consist of AKF, CF in this paper. Then, final pitch angle which is appropriate for driving environment is estimated by IMMKF in order to optimize the system model according to road slope models.

Requirement Analysis of Navigation System for Lunar Lander According to Mission Conditions (임무조건에 따른 달 착륙선 항법시스템 요구성능 분석)

  • Park, Young Bum;Park, Chan Gook;Kwon, Jae Wook;Rew, Dong Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.734-745
    • /
    • 2017
  • The navigation system of lunar lander are composed of various navigation sensors which have a complementary characteristics such as inertial measurement unit, star tracker, altimeter, velocimeter, and camera for terrain relative navigation to achieve the precision and autonomous navigation capability. The required performance of sensors has to be determined according to the landing scenario and mission requirement. In this paper, the specifications of navigation sensors are investigated through covariance analysis. The reference error model with 77 state vector and measurement model are derived for covariance analysis. The mission requirement is categorized as precision exploration with 90m($3{\sigma}$ ) landing accuracy and area exploration with 6km($3{\sigma}$ ), and the landing scenario is divided into PDI(Powered descent initiation) and DOI(Deorbit initiation) scenario according to the beginning of autonomous navigation. The required specifications of the navigation sensors are derived by analyzing the performance according to the sensor combination and landing scenario.