• Title/Summary/Keyword: error correction capability

Search Result 79, Processing Time 0.06 seconds

Blind QR Code Steganographic Approach Based upon Error Correction Capability

  • Chiang, Yin-Jen;Lin, Pei-Yu;Wang, Ran-Zan;Chen, Yi-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2527-2543
    • /
    • 2013
  • A novel steganographic QR code algorithm, which not only coveys the secret into the widely-used QR barcode but also preserves the readability of QR content and the capability of error correction, is presented in this article. Different from the conventional applications for QR barcode, the designed algorithm conceals the secret into the QR modules directly by exploiting the error correction capability. General browsers can read the QR content from the QR code via barcode readers; however, only the authorized receiver can further reveal the secret from the QR code directly. The new mechanism can convey a larger secret payload along with adjustment of the QR version and error correction level. Moreover, the blind property allows the receiver to reveal the secret without the knowledge of the embedded position of modules. Experimental results demonstrate that the new algorithm is secure, efficient and feasible for the low-power QR readers and mobile devices.

Analysis of error correction capability and recording density of an optical disc system with LDPC code (LDPC 코드를 적용한 광 디스크 시스템의 에러 정정 성능 및 기록 용량 분석)

  • 김기현;김현정;이윤우
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.537-540
    • /
    • 2003
  • In this paper, we evaluated error correction performance and recording density of an optical disc system. The performance of Low-Density Parity Check code (LDPC) is compared to the HD-DVD (BD) ECC. The recording density of optical disc can be increased by reducing the redundancy of the user data. Moreover, since the correction capability of LDPC with decreased redundancy is better than that of BD, the recording density can also be increased by reducing the mark length of the data on the disc surface.

  • PDF

The Performance evaluation of the Reed-Solomon Product Code(RSPC) (Reed-Solomon Product Code의 에러 정정 능력 평가 방법)

  • Hwang, Sung-Hee;Lee, Yoon-Woo;Han, Sung-Hyu;Ryu, Sang-Hyun;Shin, Dong-Ho;Park, In-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2496-2498
    • /
    • 2001
  • 광 디스크 channel상에서 RSPC의 error correction capability를 확률적인 계산 방법으로 계산하는 데는 많은 어려움이 있다. 그 이유는 바로 광 디스크 channel이 burst error channel이기 때문인데, 이 burst error를 어떻게 다루는 가에 따라 그 error correction capability는 사뭇 달라진다. 이 논문에서는 Sony의 dust error distribution[1] 아래에서 4-state Morkov Chain[2]로 modeling하고 그 결과를 가지고 burst error를 channel의 특성과 ECC format의 특성에 맞게 제어할 수 있는 확률적인 계산방법을 소개하고 그것을 simulation하고자 한다.

  • PDF

Selection-based Low-cost Check Node Operation for Extended Min-Sum Algorithm

  • Park, Kyeongbin;Chung, Ki-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.485-499
    • /
    • 2021
  • Although non-binary low-density parity-check (NB-LDPC) codes have better error-correction capability than that of binary LDPC codes, their decoding complexity is significantly higher. Therefore, it is crucial to reduce the decoding complexity of NB-LDPC while maintaining their error-correction capability to adopt them for various applications. The extended min-sum (EMS) algorithm is widely used for decoding NB-LDPC codes, and it reduces the complexity of check node (CN) operations via message truncation. Herein, we propose a low-cost CN processing method to reduce the complexity of CN operations, which take most of the decoding time. Unlike existing studies on low complexity CN operations, the proposed method employs quick selection algorithm, thereby reducing the hardware complexity and CN operation time. The experimental results show that the proposed selection-based CN operation is more than three times faster and achieves better error-correction performance than the conventional EMS algorithm.

A Study on ${\pi}$/4-DQPSK with Nonredundant Multiple Error Correction

  • Song, Seog-Il;Han, Young-Yearl
    • ETRI Journal
    • /
    • v.21 no.2
    • /
    • pp.9-21
    • /
    • 1999
  • In this paper, to enhance the performance of ${\pi}$/4-DQPSK (${\pi}$/4-differential quadrature phase shift keying), the scheme using nonredundant multiple error correction is proposed and investigated. This scheme for the differential detection of ${\pi}$/4-DQPSK uses the signal output which is delayed for more than two time slots as the parity check bit and applies it to nonredundant multiple error correction. The proposed system was used for studying the performance of ${\pi}$/4-DQPSK with Nonredundant Error Correction (NEC) in additive white Gaussian noise (AWGN) and Nakagami fade modeled mobile communication channel, and it was observed that the performance increased as the error correction capability increased.

  • PDF

${\frac{\pi}{4}}$-DQPSK with Nonredundant error correction in Nakagami fading channel (나카가미 페이딩채널에서 비용장 오류정정을 갖는 ${\frac{\pi}{4}}$-DQPSK의 성능분석)

  • 송석일;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.1948-1959
    • /
    • 1999
  • The error rate performance of the proposed $\pi$/4-differential quadructure phase shift keying( $\pi$/4-DQPSK) with nonredundant multiple error correction is analyzed for Nakagami fading channel. The scheme for differential detection of $\pi$/4-QPSK with nonredundant multiple error correction utilizes the output that employ the received signal delayed by more than two time slots. It was observed that the performance increased as the error correction capability increased.

  • PDF

A clustered cyclic product code for the burst error correction in the DVCR systems (DVCR 시스템의 연집 오류 정정을 위한 클러스터 순환 프러덕트 부호)

  • 이종화;유철우;강창언;홍대식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.2
    • /
    • pp.1-10
    • /
    • 1997
  • In this paper, an improved lower bound on the burst-error correcting capability of th ecyclic product code is presented and through the analysis of this new bound clustered cyclic product (CCP abbr.)code is proposed. The CCP code, to improve the burst-error correcting capability, combines the idea of clustering and the transmission method of cyclic product code. That is, a cluster which is defined in this paper as a group of consecutive code symbols is employed as a new transmission unit to the code array transmission of cyclic product code. the burst-error correcting capability of the CCP code is improved without a loss in the random-error correcting capability and performance comparison in the digital video camera records (DVCR) system shows the superiority of the proposed CCP code over conventional product codes.

  • PDF

Design of a Viterbi Decoder with an Error Prediction Circuit for the Burst Error Compensation (에러 예측회로를 이용한 Burst error 보정 비터비 디코더 설계)

  • 윤태일;박상열;이제훈;조경록
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.45-52
    • /
    • 2004
  • This Paper presents a modified hard decision Viterbi decoder with an error prediction circuit enhancing performance for the burst error inputs. Viterbi decoder employs the maximum likelihood decoding algorithm which shows excellent error correction capability for the random error inputs. Viterbi decoders, however, suffer poor error correction performance for the burst error inputs under the fading channel. The proposed error prediction algorithm increases error correction capability for the burst errors. The algorithm estimaties the burst error data area using the maximum path metric for the erroneous inputs, It calculates burst error intervals based on increases in the maximum values of a path metric. The proposed decoder keeps a performance the same as the conventional decoders on AWGN channels for the IEEE802.l1a WLAN system. It shows performance inproving 15% on the burst error of multi-path fading channels, widely used in mobile systems.

Energy Savings in OFDM Systems through Cooperative Relaying

  • Khuong, Ho Van;Kong, Hyung-Yun
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.27-35
    • /
    • 2007
  • Energy savings in orthogonal frequency division multiplexing (OFDM) systems is an active research area. In order to achieve a solution, we propose a new cooperative relaying scheme operated on a per subcarrier basis. This scheme improves the bit error rate (BER) performance of the conventional signal-to-noise ratio (SNR)-based selection relaying scheme by substituting SNR with symbol error probability (SEP) to evaluate the received signal quality at the relay more reliably. Since the cooperative relaying provides spatial diversity gain for each subcarrier, thus statistically enhancing the reliability of subcarriers at the destination, the total number of lost subcarriers due to deep fading is reduced. In other words, cooperative relaying can alleviate error symbols in a codeword so that the error correction capability of forward error correction codes can be fully exploited to improve the BER performance (or save transmission energy at a target BER). Monte-Carlo simulations validate the proposed approach.

  • PDF

New Decoding Techniques of RS Codes for Optical Disks (광학식 디스크에 적합한 RS 부호의 새로운 복호 기법)

  • 엄흥열;김재문;이만영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.3
    • /
    • pp.16-33
    • /
    • 1993
  • New decoding algorithm of double-error-correction Reed-Solmon codes over GF(2$^{8}$) for optical compact disks is proposed and decoding algorithm of RS codes with triple-error-correcting capability is presented in this paper. First of all. efficient algorithms for estimating the number of errors in the received code words are presented. The most complex circuits in the RS decoder are parts for soving the error-location numbers from error-location polynomial, so the complexity of those circuits has a great influence on overall decoder complexity. One of the most known algorithm for searching the error-location number is Chien's method, in which all the elements of GF(2$^{m}$) are substituted into the error-location polynomial and the error-location number can be found as the elements satisfying the error-location polynomial. But Chien's scheme needs another 1 frame delay in the decoder, which reduces decoding speed as well as require more stroage circuits for the received ocode symbols. The ther is Polkinghorn method, in which the roots can be resolved directly by solving the error-location polynomial. Bur this method needs additional ROM (readonly memory) for storing tthe roots of the all possible coefficients of error-location polynomial or much more complex cicuit. Simple, efficient, and high speed method for solving the error-location number and decoding algorithm of double-error correction RS codes which reudce considerably the complexity of decoder are proposed by using Hilbert theorems in this paper. And the performance of the proposed decoding algorithm is compared with that of conventional decoding algorithms. As a result of comparison, the proposed decoding algorithm is superior to the conventional decoding algorithm with respect to decoding delay and decoder complexity. And decoding algorithm of RS codes with triple-error-correcting capability is presented, which is suitable for error-correction in digital audio tape, also.

  • PDF