Journal of the Institute of Electronics Engineers of Korea TC
/
v.42
no.2
s.332
/
pp.61-74
/
2005
Digital Multimedia Broadcasting(DMB) is a reliable multi-service system for reception by mobile and portable receivers. DMB system allows interference-free reception under the conditions of multipath propagation and transmission errors using COFDM modulation scheme, simultaneously, needs powerful channel error's correction ability. Viterbi Decoder for DMB receiver uses punctured convolutional code and needs lots of computations for real-time operation. So, it is desired to design a high speed and low-power hardware scheme for Viterbi decoder. This paper proposes a combined add-compare-select(ACS) and path metric normalization(PMN) unit for computation power. The proposed PMN architecture reduces the problem of the critical path by applying fixed value for selection algorithm due to the comparison tree which has a weak point from structure with the high-speed operation. The proposed ACS uses the decomposition and the pre-computation technique for reducing the complicated degree of the adder, the comparator and multiplexer. According to a simulation result, reduction of area $3.78\%$, power consumption $12.22\%$, maximum gate delay $23.80\%$ occurred from punctured viterbi decoder for DMB system.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.5
/
pp.487-496
/
2000
In this paper, the Multi-FNN(Fuzzy-Neural Networks) model is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNN is based on Yamakawa's FNN and uses simplified inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and Genetic Algorithms(GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. The aggregate performance index stands for an aggregate objective function with a weighting factor to consider a mutual balance and dependency between approximation and predictive abilities. According to the selection and adjustment of a weighting factor of this aggregate abjective function which depends on the number of data and a certain degree of nonlinearity, we show that it is available and effective to design an optimal Multi-FNN model. To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.39
no.3
/
pp.18-31
/
2002
In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.
The objectives of this Paper is to implement a diagnostic classifier of differential laryngeal diseases from acoustic signals acquired in a noisy room. For this Purpose, the voice signals of the vowel /a/ were collected from Patients in a soundproof chamber and got mixed with noise. Then, the acoustic Parameters were analyzed, and hierarchical neural networks were applied to the data classification. The classifier had a structure of five-step hierarchical neural networks. The first neural network classified the group into normal and benign or malign laryngeal disease cases. The second network classified the group into normal or benign laryngeal disease cases The following network distinguished polyp. nodule. Palsy from the benign laryngeal cases. Glottic cancer cases were discriminated into T1, T2. T3, T4 by the fourth and fifth networks All the neural networks were based on multilayer perceptron model which classified non-linear Patterns effectively and learned by an error back-propagation algorithm. We chose some acoustic Parameters for classification by investigating the distribution of laryngeal diseases and Pilot classification results of those Parameters derived from MDVP. The classifier was tested by using the chosen parameters to find the optimum ones. Then the networks were improved by including such Pre-Processing steps as linear and z-score transformation. Results showed that 90% of T1, 100% of T2-4 were correctly distinguished. On the other hand. 88.23% of vocal Polyps, 100% of normal cases. vocal nodules. and vocal cord Paralysis were classified from the data collected in a noisy room.
It is necessary to develop methodologies for the application of artificial neural network into hydrologic rainfall-runoff process, although there is so much applicability by using the functions of associative memory based on recognition for the relationships between causes and effects and the excellent fitting capacity for the nonlinear phenomenon. In this study, some problems are presented in the application procedures of artificial neural networks and the simulation of runoff hydrograph experiences are reviewed with nonlinear functional approximator by artificial neural network for rainfall-runoff relationships in a watershed. which is regarded as hydrdologic black box model. The neural network models are constructed by organizing input and output patterns with the deserved rainfall and runoff data in Pyoungchang river basin under the assumption that the rainfall data is the input pattern and runoff hydrograph is the output patterns. Analyzed with the results. it is possible to simulate the runoff hydrograph with processing element of artificial neural network with any hydrologic concepts and the weight among processing elements are well-adapted as model parameters with the assumed model structure during learning process. Based upon these results. it is expected that neural network theory can be utilized as an efficient approach to simulate runoff hydrograph and identify the relationship between rainfall and runoff as hydrosystems which is necessary to develop and manage water resources.
The Transactions of the Korea Information Processing Society
/
v.4
no.2
/
pp.465-482
/
1997
In this paper, we have studied on cinstructing code-recognition shstem by neural network according to a image process taking the DOT classification code stamped on tire surface.It happened to a few problems that characters distorted in edge by diffused reflection and two adjacent characters take the same label,even very sen- sitive to illumination ofr recognition the stamped them on tire.Thus,this paper would propose the algorithm for tire code under being cinscious of these properties and prove the algorithm drrciency with a simulation.Also,we have suggerted the MCBP network composing of multi-linked recognizers of dffcient identify the DOT code being tire classification code.The MCBP network extracts the projection balue for classifying each character's rdgion after taking out the prjection of each chracter's region on X,Y axis,processes each chracters by taking 7$\times$8 normalization.We have improved error rate 3% through the MCBP network and post-process comparing the DOT code Database. This approach has a accomplished that learming time get's improvenent at 60% and recognition rate has become to 95% from 90% than BckPropagation with including post- processing it has attained greate rates of entire of tire recoggnition at 98%.
In the elastic wave equations, both horizontal and vertical displacements are defined. Since we can measure both the horizontal and vertical displacements in field acquisition, these displacements compose a displacement vector. In this study, we propose a frequency-domain elastic waveform inversion technique taking advantage of the magnitudes of displacement vectors to define objective function. When we apply this displacement-vector objective function to the frequency-domain waveform inversion, the inversion process naturally incorporates the back-propagation algorithm. Through the inversion examples with the Marmousi model and the SEG/EAGE salt model, we could note that the RMS error of the solution obtained by our algorithm decreased more stably than that of the conventional method. Particularly, the density of the Marmousi model and the low-velocity sub-salt zone of the SEG/EAGE salt model were successfully recovered. Since the gradient direction obtained from the proposed objective function is numerically unstable, we need additional study to stabilize the gradient direction. In order to perform the waveform inversion using the displacementvector objective function, it is necessary to acquire multi-component data. Hence, more rigorous study should be continued for the multi-component land acquisition or OBC (Ocean Bottom Cable) multi-component survey.
In the case of acquisition and displaying medical Images such as ultrasonography and endoscopy on VGA monitor of PC system, image degradation of tear-drop appears through scan conversion. In this study, we compare several methods which can solve this degradation and implement the hardware system that resolves this problem in real-time with PC. It is possible to represent high quality image display and real-time processing and acquisition with specific de-interlacing device and PCI bridge on our hardware system. Image quality is improved remarkably on our hardware system. It is implemented as PC-based system, so acquiring, saving images and describing text comment on those images and PACS networking can be easily implemented.metabolism. All images were spatially normalized to MNI standard PET template and smoothed with 16mm FWHM Gaussian kernel using SPM96. Mean count in cerebral region was normalized. The VOls for 34 cerebral regions were previously defined on the standard template and 17 different counts of mirrored regions to hemispheric midline were extracted from spatially normalized images. A three-layer feed-forward error back-propagation neural network classifier with 7 input nodes and 3 output nodes was used. The network was trained to interpret metabolic patterns and produce identical diagnoses with those of expert viewers. The performance of the neural network was optimized by testing with 5~40 nodes in hidden layer. Randomly selected 40 images from each group were used to train the network and the remainders were used to test the learned network. The optimized neural network gave a maximum agreement rate of 80.3% with expert viewers. It used 20 hidden nodes and was trained for 1508 epochs. Also, neural network gave agreement rates of 75~80% with 10 or 30 nodes in hidden layer. We conclude that artificial neural network performed as well as human experts and could be potentially useful as clinical decision support tool for the localization of epileptogenic zones.
The Transactions of the Korea Information Processing Society
/
v.3
no.3
/
pp.439-448
/
1996
Extraction and selection of the informative features play a central role in pattern recognition. This paper describes a modified back-propagation algorithm that performs selection of the informative features and trains a neural network simultaneously. The algorithm is mainly composed of three repetitive steps : training, connection pruning, and input unit elimination. Afer initial training, the connections that have small magnitude are first pruned. Any unit that has a small number of connections to the hidden units is deleted,which is equivalent to excluding the feature corresponding to that unit.If the error increases,the network is retraned,again followed by connection pruning and input unit elimination.As a result,the algorithm selects the most im-portant features in the measurement space without a transformation to another space.Also,the selected features are the most-informative ones for the classification,because feature selection is tightly coupled with the classifi-cation performance.This algorithm helps avoid measurement of redundant or less informative features,which may be expensive.Furthermore,the final network does not include redundant parameters,i.e.,weights and biases,that may cause degradation of classification performance.In applications,the algorithm preserves the most informative features and significantly reduces the dimension of the feature vectors whiout performance degradation.
Deep learning model is a kind of neural networks that allows multiple hidden layers. There are various deep learning architectures such as convolutional neural networks, deep belief networks and recurrent neural networks. Those have been applied to fields like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they have been shown to produce state-of-the-art results on various tasks. Among those architectures, convolutional neural networks and recurrent neural networks are classified as the supervised learning model. And in recent years, those supervised learning models have gained more popularity than unsupervised learning models such as deep belief networks, because supervised learning models have shown fashionable applications in such fields mentioned above. Deep learning models can be trained with backpropagation algorithm. Backpropagation is an abbreviation for "backward propagation of errors" and a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent. The method calculates the gradient of an error function with respect to all the weights in the network. The gradient is fed to the optimization method which in turn uses it to update the weights, in an attempt to minimize the error function. Convolutional neural networks use a special architecture which is particularly well-adapted to classify images. Using this architecture makes convolutional networks fast to train. This, in turn, helps us train deep, muti-layer networks, which are very good at classifying images. These days, deep convolutional networks are used in most neural networks for image recognition. Convolutional neural networks use three basic ideas: local receptive fields, shared weights, and pooling. By local receptive fields, we mean that each neuron in the first(or any) hidden layer will be connected to a small region of the input(or previous layer's) neurons. Shared weights mean that we're going to use the same weights and bias for each of the local receptive field. This means that all the neurons in the hidden layer detect exactly the same feature, just at different locations in the input image. In addition to the convolutional layers just described, convolutional neural networks also contain pooling layers. Pooling layers are usually used immediately after convolutional layers. What the pooling layers do is to simplify the information in the output from the convolutional layer. Recent convolutional network architectures have 10 to 20 hidden layers and billions of connections between units. Training deep learning networks has taken weeks several years ago, but thanks to progress in GPU and algorithm enhancement, training time has reduced to several hours. Neural networks with time-varying behavior are known as recurrent neural networks or RNNs. A recurrent neural network is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. Early RNN models turned out to be very difficult to train, harder even than deep feedforward networks. The reason is the unstable gradient problem such as vanishing gradient and exploding gradient. The gradient can get smaller and smaller as it is propagated back through layers. This makes learning in early layers extremely slow. The problem actually gets worse in RNNs, since gradients aren't just propagated backward through layers, they're propagated backward through time. If the network runs for a long time, that can make the gradient extremely unstable and hard to learn from. It has been possible to incorporate an idea known as long short-term memory units (LSTMs) into RNNs. LSTMs make it much easier to get good results when training RNNs, and many recent papers make use of LSTMs or related ideas.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.