• Title/Summary/Keyword: error back-propagation

Search Result 463, Processing Time 0.026 seconds

Water Quality Forecasting of Chungju Lake Using Artificial Neural Network Algorithm (인공신경망 이론을 이용한 충주호의 수질예측)

  • 정효준;이소진;이홍근
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.201-207
    • /
    • 2002
  • This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.

A Study on the Fuzzy-Neural Network Controller for Load Frequency Control (부하주파수제어를 위한 퍼지-신경망 제어기에 관한 연구)

  • 정형환;김상효;주석민;정문규
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.137-144
    • /
    • 1998
  • This paper proposed a optimal scale factors technique of a fuzzy-neural network for a load frequency control of two areas power system. The optimal scale factors control technique is optimize from an initial fuzzy logic control rule, and then is learned with an error back propagation learning algorithm of the fuzzy-neural network. In application two areas the load frequency control of the power system, it hopes to have response characteristic better than optimal control technique which is the conventional control technique and to show to minimize a frequency deviation and reaching and settling time of a tie line power flow deviation

  • PDF

Recognition of the Korean Alphabet using Phase Synchronization of Neural Oscillator

  • Lee, Joon-Tark;Bum, Kwon-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.93-99
    • /
    • 2004
  • Neural oscillator can be applied to oscillatory systems such as analyses of image information, voice recognition and etc. Conventional EBPA (Error back Propagation Algorithm) is not proper for oscillatory systems with the complicate input`s patterns because of its tedious training procedures and sluggish convergence problems. However, these problems can be easily solved by using a synchrony characteristic of neural oscillator with PLL(Phase Locked Loop) function and by using a simple Hebbian learning rule. Therefore, in this paper, a technique for Recognition of the Korean Alphabet using Phase Synchronized Neural Oscillator was introduced.

Design of The Robust Fuzzy Controller Using State Feedback Gain (상태궤환이득을 이용한 강건한 퍼지 제어기의 설계)

  • 홍대승
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.496-508
    • /
    • 1999
  • Fuzzy System which are based on membership functions and rules can control nonlinear uncertain complex systems well. However Fuzzy logic controller(FLC) has problems; It is difficult to design the stable FLC and FLC depends mainly on individual experience. Although FLC can be designed using the error back-propagation algorithm it takes long time to converge into global optimal parameters. Well-developed linear system theory should not be replaced by FLC but instead it should be suitably used with FLC. A new methodology is introduced for designing THEN-PART membership functions of FLC based on its well-tuned state feedback controller. A example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF

A Study on the Recognition System of the Il-Pa Stenographic Character Images using EBP Algorithm

  • Kim, Sang-Keun;Park, Gwi-Tae
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.27-32
    • /
    • 2002
  • In this paper, we would study the applicability of neural networks to the recognition process of Korean stenographic character image, applying the classification function, which is the greatest merit of those of neural networks applied to the various parts so far, to the stenographic character recognition, relatively simple classification work. Korean stenographic recognition algorithms, which recognize the characters by using some methods, have a quantitative problem that despite the simplicity of the structure, a lot of basic characters are impossible to classify into a type. They also have qualitative one that It Is not easy to classify characters fur the delicacy of the character farms. Even though this is the result of experiment under the limited environment of the basic characters, this shows the possibility that the stenographic characters can be recolonized effectively by neural network system. In this system, we got 90.86% recognition rate as an average.

  • PDF

Speed control of AC Servo Motor with Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 교류 서보 전동기의 속도제어)

  • Kim, Jong-Hyun;Kim, Sang-Hoon;Ko, Bong-Un;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2018-2020
    • /
    • 2001
  • In this study, a Neuro-Fuzzy Controller which has the characteristic of Fuzzy control and Artificial Neural Network is designed. A fuzzy rule to be applied is automatically selected by the allocated neurons. The neurons correspond to Fuzzy rules are created by an expert. To adapt the more precise modeling is implemented by error back propagation learning of adjusting the link-weight of fuzzy membership function in the Neuro-Fuzzy controller. The more classified fuzzy rule is used to include the property of dual mode method. In order to verify the effectiveness of an algorithm designed above, an operating characteristic of a AC servo motor is investigated.

  • PDF

A Study on the Mapping for Adjustment of Colors on Ink Jet Printer with Error Back Propagation (잉크젯프린터의 칼라 보정을 위한 오차역전파 알고리즘의 매핑 연구)

  • 김홍기;조맹섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.323-325
    • /
    • 2000
  • 정보통신의 발전에 따라 컴퓨터 및 주변 장치간에 칼라를 정확히 재생할 수 있는 능력이 산업 경쟁력에 중요한 요소로 부상하고 있다. 본 논문에서는 모니터 상의 이미지를 프린터로 인쇄하기 위하여 사용되는 기존의 참조테이블(Look Up Table) 방식을 살펴보고 이 기능을 대체할 수 있는 신경회로망에 의한 칼라보정 매핑 방법을 제안하였다. 참조테이블 방식에서는 3차원으로 구성된 테이블을 구성하기가 쉽지 않고 구간 사이의 칼라값은 보간법을 써서 구해야 한다. 신경회로망에 의한 방법에서는 일단 학습을 완료하면 실시간으로 칼라를 보정해 주는 장점이 있다. 실험에서는 두 가지 방법에 의한 칼라 샘플의 모델을 통한 결과 값을 비교해 보고 상호간의 장단점과 성능 향상을 위한 방법을 토의하였다.

  • PDF

Neural network PI parameter Self-tuning Simulator for Permanent Magnet Synchronous Motor operation (영구자석 동기전동기 구동을 위한 신경회로망 PI 파라미터 자기 동조 시뮬레이터)

  • Bae, Eun-Kyeong;Kwon, Jung-Dong;Jeon, Kee-Young;Park, Choon-Woo;Oh, Bong-Hwan;Jeong, Choon-Byeong;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.394-396
    • /
    • 2007
  • In this paper proposed to neural network PI self-tuning direct controller using Error back propagation algorithm. Proposed controller applies to speed controller and current controller. Also, this built up the interface environment to drive it simply and exactly in any kind of reference, environment fluent and parameter transaction of PMSM. Neural network PI self-tuning simulator using Visual C++ and Matlab Simulation is organized to construct this environment, Built up interface has it's own purpose that even the user who don't have the accurate knowledge of Neural network can embody operation characteristic rapidly and easily.

  • PDF

Implementation of ME8P Learning Circuitry With Simple Nonlinear Synapse Circuit (간단한 비선형 시냅스 회로를 이용한 MEBP 학습 회로의 구현)

  • Cho, Hwa-Hyun;Chae, Jong-Seok;Lee, Eum-Sang;Park, Jin-Sung;Choi, Myung-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2977-2979
    • /
    • 1999
  • 본 논문에서는 MEBP(Modified Error Back-Propagation) 학습 규칙을 간단한 비선형 회로를 이용하여 구현하였다. 인공 신경 회로망(ANNs : Artificial Neural Networks)은 많은 수의 뉴런을 필요하기 때문에 표준 CMOS 기술을 이용하는 간단한 비선형 시냅스(synapse) 회로는 인공 신경 회로망 구현에 적합하다. 학습회로는 비선형 시냅스 회로. 시그모이드(sigmoid) 회로. 그리고 선형 곱셈기로 구성되어 있다. 학습 회로의 출력은 각 입력 패턴에 따라 유일한 값으로 결정되어진다. 제안한 학술회로를 $2{\times}2{\times}1$$2{\times}3{\times}1$ 다층 feedforward 신경 회로망 모델에 적용하였다. MEBP 하드웨어 구현은 HSPICE 회로 시뮬레이터를 이용하여 검증하였다. 제안한 학술 회로는 on-chip 학습회로를 포함한 대규모 신경회로망 구현에 매우 적합하리라 예상된다.

  • PDF

A Learning Scheme for Hardware Implementation of Feedforward Neural Networks (FNNs의 하드웨어 구현을 위한 학습방안)

  • Park, Jin-Sung;Cho, Hwa-Hyun;Chae, Jong-Seok;Choi, Myung-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2974-2976
    • /
    • 1999
  • 본 논문에서는 단일패턴과 다중패턴 학습이 가능한 FNNs(Feedforward Neural Networks)을 하드웨어로 구현하는데 필요한 학습방안을 제안한다. 제안된 학습방안은 기존의 하드웨어 구현에 이용되는 방식과는 전혀 다른 방식이며, 오히려 기존의 소프트웨어 학습방식과 유사하다. 기존의 하드웨어 구현에서 사용되는 방법은 오프라인 학습이나 단일패턴 온 칩(on-chip) 학습방식인데 반해, 제안된 학습방식은 단일/다중패턴은 칩 학습방식으로 다층 FNNs 회로와 학습회로 사이에 스위칭 회로를 넣어 구현되었으며, FNNs의 학습회로는 선형 시냅스 회로와 선형 곱셈기 회로를 사용하여MEBP(Modified Error Back-Propagation) 학습규칙을 구현하였다. 제안된 방식은 기존의 CMOS 공정으로 구현되었고 HSPICE 회로 시뮬레이터로 그 동작을 검증하였다 구현된 FNNs은 어떤 학습패턴 쌍에 의해 유일하게 결정되는 출력 전압을 생성한다. 제안된 학습방안은 향후 학습 가능한 대용량 신경망의 구현에 매우 적합하리라 예상된다.

  • PDF