• Title/Summary/Keyword: error back-propagation

Search Result 463, Processing Time 0.024 seconds

Reliability Optimization of Urban Transit Brake System For Efficient Maintenance (효율적 유지보수를 위한 도시철도 전동차 브레이크의 시스템 신뢰도 최적화)

  • Bae, Chul-Ho;Kim, Hyun-Jun;Lee, Jung-Hwan;Kim, Se-Hoon;Lee, Ho-Yong;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.26-35
    • /
    • 2007
  • The vehicle of urban transit is a complex system that consists of various electric, electronic, and mechanical equipments, and the maintenance cost of this complex and large-scale system generally occupies sixty percent of the LCC (Life Cycle Cost). For reasonable establishing of maintenance strategies, safety security and cost limitation must be considered at the same time. The concept of system reliability has been introduced and optimized as the key of reasonable maintenance strategies. For optimization, three preceding studies were accomplished; standardizing a maintenance classification, constructing RBD (Reliability Block Diagram) of VVVF (Variable Voltage Variable Frequency) urban transit, and developing a web based reliability evaluation system. Historical maintenance data in terms of reliability index can be derived from the web based reliability evaluation system. In this paper, we propose applying inverse problem analysis method and hybrid neuro-genetic algorithm to system reliability optimization for using historical maintenance data in database of web based system. Feed-forward multi-layer neural networks trained by back propagation are used to find out the relationship between several component reliability (input) and system reliability (output) of structural system. The inverse problem can be formulated by using neural network. One of the neural network training algorithms, the back propagation algorithm, can attain stable and quick convergence during training process. Genetic algorithm is used to find the minimum square error.

A VLSI Pulse-mode Digital Multilayer Neural Network for Pattern Classification : Architecture and Computational Behaviors (패턴인식용 VLSI 펄스형 디지탈 다계층 신경망의 구조및 동작 특성)

  • Kim, Young-Chul;Lee, Gyu-Sang
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.144-152
    • /
    • 1996
  • In this paper, a pulse-mode digital multilayer neural network with a massively parallel yet compact and flexible network architecture is presented. Algebraicneural operations are replaced by stochastic processes using pseudo-random pulse sequences and simple logic gates are used as basic computing elements. The distributions of the results from the stochastic processes are approximated using the hypergeometric distribution. A statistical model of the noise(error) is developed to estimate the relative accuracy associated with stochastic computing in terms of mean and variance. Numerical character recognition problems are applied to the network to evaluate the network performance and to justify the validity of analytic results based on the developed statistical model. The network architectures are modeled in VHDL using the mixed descriptions of gate-level and register transfer level (RTL). Experiments show that the statistical model successfully predicts the accuracy of the operations performed in the network and that the character classification rate of the network is competitive to that of ordinary Back-Propagation networks.

  • PDF

Coordinates Transformation and Correction Techniques of the Distorted Omni-directional Image (왜곡된 전 방향 영상에서의 좌표 변환 및 보정)

  • Cha, Sun-Hee;Park, Young-Min;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.816-819
    • /
    • 2005
  • This paper proposes a coordinate correction technique using the transformation of 3D parabolic coordinate function and BP(Back Propagation) neural network in order to solve space distortion problem caused by using catadioptric camera. Although Catadioptric camera can obtain omni-directional image at all directions of 360 degrees, it makes an image distorted because of an external form of lens itself. Accordingly, To obtain transformed ideal distance coordinate information from distorted image on 3 dimensional space, we use coordinate transformation function that uses coordinates of a focus at mirror in the shape of parabolic plane and another one which projected into the shape of parabolic from input image. An error of this course is modified by BP neural network algorithm.

  • PDF

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 김종수;강성주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1743-1750
    • /
    • 2003
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as a speed detector, but they increase cost and size of the motor and restrict the industrial drive applications. So in these days, many papers have reported in the sensorless operation of DC motor〔3­5〕. This paper presents a new sensorless strategy using neural networks〔6­8〕. Neural network has three layers which are input layer, hidden layer and output layer. The optimal neural network structure was tracked down by trial and error, and it was found that 4­16­1 neural network structure has given suitable results for the instantaneous rotor speed. Also, learning method is very important in neural network. Supervised learning methods〔8〕 are typically used to train the neural network for learning the input/output pattern presented. The back­propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

Nonlinear Noise Attenuator by Adaptive Wiener Filter with Neural Network (신경망 구조의 적응 Wiener 필터를 이용한 비선형 잡음감쇠기)

  • Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.71-76
    • /
    • 2023
  • This paper studied a method of attenuating nonlinear noise using a Wiener filter of a neural network structure in an acoustic noise attenuator. This system improves nonlinear noise attenuation performance with a deep learning algorithm using a neural network Wiener filter instead of using a conventional adaptive filter. A voice is estimated from a single input voice signal containing nonlinear noise using a 128-neuron, 8-neuron hidden layer and an error back propagation algorithm. In this study, a simulation program using the Keras library was written and a simulation was performed to verify the attenuation performance for nonlinear noise. As a result of the simulation, it can be seen that the noise attenuation performance of this system is significantly improved when the FNN filter is used instead of the Wiener filter even when nonlinear noise is included. This is because the complex structure of the FNN filter expresses any type of nonlinear characteristics well.

Prediction of Various Properties of Soft Ground Soils using Artificial Neural Network (인공신경망을 이용한 연약지반의 지반설계정수 예측)

  • Kim, Young Su;Jeong, Woo Seob;Jeonge, Hwan Chul;Im, An Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.81-88
    • /
    • 2006
  • This study performed field and laboratory tests for poor subsoils taken in six regions of the country and determined undrain shear strength. Su values and preconsolidation pressure are predicted using Back Propagation neural network (BPNN) and the application of BPNN is verified. The result of BPNN shows that correlation coefficient between test and neural network result is over 0.9, which means high correlativity. Especially the neural network uses only 6 parameters such as natural water content, void ratio, specific gravity, rate of passing 200th sieve, liquid limits and plasticity index among various affecting factors to estimate value and the correlation coefficent is 0.93. The conclusions obtained in this paper are from the tests performed for poor subsoils taken in the several regions of the country. If there were more test results, the prediction and influence of various soil properties could be effectively performed by neural network.

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi;Abed Alanazi;Sabih Hashim Muhodir;Shtwai Alsubai;Abdullah Alqahtani;Mehrez Marzougui
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.307-321
    • /
    • 2024
  • This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.

Temperature Prediction of Underground Working Place Using Artificial Neural Networks (인공신경망을 이용한 심부 갱내온도 예측)

  • Kim, Yun-Kwang;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.17 no.4
    • /
    • pp.301-310
    • /
    • 2007
  • The prediction of temperature in the workings for the propriety examination for the development of a deep coal bed and the ventilation design is fairly important. It is quite demanding to obtain precise thermal conductivity of rock due to the variety and the complexity of the rock types contiguous to the coal bed. Therefore, to estimate the thermal conductivity corresponding to this geological situation and complex gallery conditions, a computing program which is TemPredict, is developed in this study. It employs Artificial Neural Network and calculates the climatic conditions in galleries. This advanced neural network is based upon the Back-Propagation Algorithm and composed of the input layers that are acceptant of the physical and geological factors of the coal bed and the hidden layers each of which has the 5 and 3 neurons. To verify TemPredict, the calculated result is compared with the measured one at the entrance of -300 ML 9X of Jang-sung production department, Jang-sung Coal Mine. The difference between the results calculated by TemPredict ($25.65^{\circ}C$) and measured ($25.7^{\circ}C$) is only $0.05^{\circ}C$, which is less than the allowable error 5%. The result has more than 95% of very high reliability. The temperature prediction for the main carriage gallery 9X in -425 ML under construction when it is completed is made. Its result is $28.2^{\circ}C$. In the future, it would contribute to the ventilation design for the mine and the underground structures.

A Study on the Forecasting of Daily Streamflow using the Multilayer Neural Networks Model (다층신경망모형에 의한 일 유출량의 예측에 관한 연구)

  • Kim, Seong-Won
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.537-550
    • /
    • 2000
  • In this study, Neural Networks models were used to forecast daily streamflow at Jindong station of the Nakdong River basin. Neural Networks models consist of CASE 1(5-5-1) and CASE 2(5-5-5-1). The criteria which separates two models is the number of hidden layers. Each model has Fletcher-Reeves Conjugate Gradient BackPropagation(FR-CGBP) and Scaled Conjugate Gradient BackPropagation(SCGBP) algorithms, which are better than original BackPropagation(BP) in convergence of global error and training tolerance. The data which are available for model training and validation were composed of wet, average, dry, wet+average, wet+dry, average+dry and wet+average+dry year respectively. During model training, the optimal connection weights and biases were determined using each data set and the daily streamflow was calculated at the same time. Except for wet+dry year, the results of training were good conditions by statistical analysis of forecast errors. And, model validation was carried out using the connection weights and biases which were calculated from model training. The results of validation were satisfactory like those of training. Daily streamflow forecasting using Neural Networks models were compared with those forecasted by Multiple Regression Analysis Mode(MRAM). Neural Networks models were displayed slightly better results than MRAM in this study. Thus, Neural Networks models have much advantage to provide a more sysmatic approach, reduce model parameters, and shorten the time spent in the model development.

  • PDF