• Title/Summary/Keyword: error analysis methods

Search Result 1,695, Processing Time 0.025 seconds

Comparative Evaluation of Three Cognitive Error Analysis Methods Through an Application to Accident Management Tasks in NPPs

  • Wondea Jung;Kim, Jaewhan;Jaejoo Ha;Wan C. Yoon
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.8-22
    • /
    • 1999
  • This study was performed to comparatively evaluate selected Human Reliability Analysis (HRA) methods which mainly focus on cognitive error analysis, and to derive the requirement of a new human error analysis (HEA) framework for Accident Management (AM) in Nuclear Power Plants (NPPs). In order to achieve this goal, we carried out a case study of human error analysis on an AM task in NPPs. In the study we evaluated three cognitive HEA methods, HRMS, CREAM and PHECA, which were selected through the review of the currently available seven cognitive HEA methods. The task of reactor cavity flooding was chosen for the application study as one of typical tasks of AM in NPPs. From the study, we derived seven requirement items for a new HEA method of AM in NPPs. We could also evaluate the applicability of three cognitive HEA methods to AM tasks. CREAM is considered to be more appropriate than others for the analysis of AM tasks, HRMS is also applicable to the error analysis of AM tasks. But, PHECA is regarded less appropriate for the predictive HEA technique as well as for the analysis of AM tasks. In addition to these, the advantages and disadvantagesofeachmethodaredescribed.

  • PDF

Comparison of error estimation methods and adaptivity for plane stress/strain problems

  • Ozakca, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.579-608
    • /
    • 2003
  • This paper deals with adaptive finite element analysis of linearly elastic structures using different error estimators based on flux projection (or best guess stress values) and residual methods. Presentations are given on a typical h-type adaptive analysis, a mesh refinement scheme and the coupling of adaptive finite element analysis with automatic mesh generation. Details about different error estimators are provided and their performance, reliability and convergence are studied using six node quadratic triangular elements. Several examples are presented to demonstrate the reliability of different error estimators.

Comparison Error of Signal Interpolation Methods for Vibration Signal Analysis of Revolution Machine (회전체의 진동신호분석을 위한 신호보간의 오차분석)

  • Park Jun-Yong;Park Chong-Yeon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.12
    • /
    • pp.820-826
    • /
    • 2004
  • In this paper, studied error of various signal interpolation methods in vibration signal analysis with digital order tracking. Because, interpolation errors are related with sampling rate and amount of calculation. Appled Signal interpolation methods are Lagrange, Newton and Cubic-spline. This paper proposed more proper interpolation method. Also, we suggest guideline for adaptive application of signal interpolation methods with Calculated results.

Error Analysis of Time-Based and Angle-Based Location Methods (시간기반과 각도기반의 측위방식 성능비교 및 오차 특성 분석)

  • Kim Dong-Hyeok;Song Seung-Hun;Sung Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.962-967
    • /
    • 2006
  • Indoor positioning is highlighted recently, and various kinds of indoor positioning systems are under developments. Since positioning systems have their own characteristics, proper positioning scheme should be chosen according to the required specifications. Positioning methods are classified into time-based and angle-based one. This paper presents the error analysis of time-based and angle-based location methods. Because measurements of these methods are nonlinear, linearizations are needed in both cases to estimate the user position. In the linearization, Gauss-Newton method is used in both cases. To analyze the position error, we investigate the error ellipse parameters that include eccentricity, rotation angle, and the size of ellipse. Simulation results show that the major axes of TOA and AOA method lie in different quadrants at most region of workspace, especially where the geometry is poor. When the TOA/AOA hybrid is employed, it is found that the error ellipse is reduced to the intersection of ellipses of TOA and AOA.

A Study on Development of the Prediction Model Related to the Sound Pressure in Terms of Frequencies, Using the Pass-by and NCPX Method (Pass-by계측과 NCPX계측에 의한 주파수 별 음압 예측 모델 개발에 관한 연구)

  • Kim, Do Wan;Mun, Sungho;An, Deok Soon;Son, Hyeon Jang
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.79-91
    • /
    • 2013
  • PURPOSES : The methods of measuring the sound from the noise source are Pass-by method and NCPX (Noble Close Proximity) method. These measuring methods were used to determine the linkage of TAPL (Total Acoustic Pressure Level) and SPL (Sound Pressure Level) in terms of frequencies. METHODS : The frequency analysis methods are DFT (Discrete Fourier Transform) and FFT (Fast Fourier Transform), CPB (Constant Percentage Bandwidth). The CPB analysis was used in this study, based on the 1/3 octave band option configured for the frequency analysis. Furthermore, the regression analysis was used at the condition related to the sound attenuation effect. The MPE (Mean Percentage Error) and RMSE (Root Mean Squared Error) were utilized for calculating the error. RESULTS : From the results of the CPB frequency analysis, the predicted SPL along the frequency has 99.1% maximum precision with the measured SPL, resulting in roughly 1 dB(A) error. The TAPL results have precision by 99.37% with the measured TAPL. The predicted TAPL results at this study by using the SPL prediction model along the frequency have the maximum precision of 98.37% with the vehicle velocity. CONCLUSIONS : The Predicted SPL model along the frequency and the TAPL result by using the predicted SPL model have a high level of accuracy through this study. But the vehicle velocity-TAPL prediction model from the previous study by using the log regression analysis cannot be consistent with the TAPL result by using the predicted SPL model.

A Study on Improving the predict accuracy rate of Hybrid Model Technique Using Error Pattern Modeling : Using Logistic Regression and Discriminant Analysis

  • Cho, Yong-Jun;Hur, Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.269-278
    • /
    • 2006
  • This paper presents the new hybrid data mining technique using error pattern, modeling of improving classification accuracy. The proposed method improves classification accuracy by combining two different supervised learning methods. The main algorithm generates error pattern modeling between the two supervised learning methods(ex: Neural Networks, Decision Tree, Logistic Regression and so on.) The Proposed modeling method has been applied to the simulation of 10,000 data sets generated by Normal and exponential random distribution. The simulation results show that the performance of proposed method is superior to the existing methods like Logistic regression and Discriminant analysis.

  • PDF

Error Analysis of time-based and angle-based location methods

  • Kim, Dong-Hyouk;Song, Seung-Hun;Sung, Tae-Kyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.479-483
    • /
    • 2006
  • Indoor positioning is recently highlighted and various kinds of indoor positioning systems are under developments. Since positioning systems have their own characteristics, proper positioning scheme should be chosen according to the required specifications. Positioning methods are often classified into time-based and angle-based one, and this paper presents the error analysis of these location methods. Because measurement equations of these methods are nonlinear, linearization is usually needed to get the position estimate. In this paper, Gauss-Newton method is used in the linearization. To analyze the position error, we investigate the error ellipse parameters that include eccentricity, rotation angle, and the size of ellipse. Simulation results show that the major axes of error ellipses of TOA and AOA method lie in different quadrants at most region of workspace, especially where the geometry is poor. When the TOA/AOA hybrid scheme is employed, it is found that the error ellipse is reduced to the intersection of ellipses of TOA and AOA method.

  • PDF

A Hybrid Data Mining Technique Using Error Pattern Modeling (오차 패턴 모델링을 이용한 Hybrid 데이터 마이닝 기법)

  • Hur, Joon;Kim, Jong-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.4
    • /
    • pp.27-43
    • /
    • 2005
  • This paper presents a new hybrid data mining technique using error pattern modeling to improve classification accuracy when the data type of a target variable is binary. The proposed method increases prediction accuracy by combining two different supervised learning methods. That is, the algorithm extracts a subset of training cases that are predicted inconsistently by both methods, and models error patterns from the cases. Based on the error pattern model, the Predictions of two different methods are merged to generate final prediction. The proposed method has been tested using practical 10 data sets. The analysis results show that the performance of proposed method is superior to the existing methods such as artificial neural networks and decision tree induction.

REVISION OF THE THEORY OF SYMMETRIC ONE-STEP METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

  • Kulikov, G.Yo.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.669-690
    • /
    • 1998
  • In this paper we develop a new theory of adjoint and symmetric method in the class of general implicit one-step fixed-stepsize methods. These methods arise from simple and natral def-initions of the concepts of symmetry and adjointness that provide a fruitful basis for analysis. We prove a number of theorems for meth-ods having these properties and show in particular that only the symmetric methods possess a quadratic asymptotic expansion of the global error. In addition we give a very simple test to identify the symmetric methods in practice.

A Modification of Human Error Analysis Technique for Designing Man-Machine Interface in Nuclear Power Plants (원자력 발전소 주제어실 인터페이스 설계를 위한 인적오류 분석 기법의 보완)

  • Lee, Yong-Hui;Jang, Tong-Il;Im, Hyeon-Gyo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.31-42
    • /
    • 2003
  • This study describes a modification of the technique for human error analysis in nuclear power plants (NPPs) which adopts advanced Man-Machine Interface (MMI) features based on computerized working environment, such as LCOs. Flat Panels. Large Wall Board, and computerized procedures. Firstly, the state of the art on human error analysis methods and efforts were briefly reviewed. Human error analysis method applied to NPP design has been THERP and ASEP mainly utilizing Swain's HRA handbook, which has not been facilitated enough to put the varied characteristics of MMI into HRA process. The basic concepts on human errors and the system safety approach were revisited, and adopted the process of FMEA with the new definition of Error Segment (ESJ. A modified human error analysis process was suggested. Then, the suggested method was applied to the failure of manual pump actuation through LCD touch screen in loss of feed water event in order to verify the applicability of the proposed method in practices. The example showed that the method become more facilitated to consider the concerns of the introduction of advanced MMI devices, and to integrate human error analysis process not only into HRA/PRA but also into the MMI and interface design. Finally, the possible extensions and further efforts required to obtain the applicability of the suggested method were discussed.