• Title/Summary/Keyword: erosion test

Search Result 398, Processing Time 0.027 seconds

Development of a GIS Method for the Automatic Calculation of LS Factor of USLE (GIS를 이용한 USLE 지형인자(LS) 자동계산 방법에 관한 연구)

  • 우창호;황국웅
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.3
    • /
    • pp.162-177
    • /
    • 1998
  • Conentionally, LS factor for the USLE suggested by Wischmeier has been computed manually on topographic maps based on one dimensional approach. But outcomes of the equation could be severely affected by the convergence and divergence of surface runoff at complex terrains. Thus the objective of this research are to develop a method to automatically compute LS factor based on the multiple flow algorithm, and to test the accuracy of this method by comparing outcomes of this method to previous measurements or estimations of soil erosion. The program for the automatic calculation of LS factor was developed by utilizing Fox Pro 4.5, and outcomes of the program is designed to input to IDRISI. The accuracy test of LS factor was carried out by comparing the actual measurements of soil loss at two test sites in and around of Suwon. The calculated volume of soil erosion at Buju mountain, Mokpo, was also compared to the outcome of a previous research based on the LS factor calculated by the conventional onedimensional approach. The outcomes of this research are as follows. First, the computed L based on the multiple flow algorithm for concae slopes are greater than those of convex slopes,. Second, the estimated soil loss based on this method at the test site in Mokpo is much greater than the outcomes based on the conventional one-dimensional approach. It can e concluded that the application of this automatic calculation method of LS factor can improve the accuracy of USLE and facilitate soil erosion prevention methods.

  • PDF

Disaster Overall Prevention System for Beach Erosion and its Applications (해안침식 관리시스템과 그 적용)

  • Kim, Kyu-Han;Yoo, Hyung-Seok;Joung, Eui-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.602-610
    • /
    • 2008
  • A beach has such functions as disaster prevention, providing an amenity place, attracting people and maintaining the coastal ecosystem. Already well known that a beach provides an amenity place, it has also been ascertained through various examples that a sand beach performs a very important function to maintain the coastal ecosystem as well. However, Beach erosion began to occur in Korea in the 1990's and posed a social problem in the late 1990's. Nowadays, along the shorelines of Korea's many beaches, about 400 beaches have reported erosion. This study demonstrate the Disaster Overall Prevention System for Beach Erosion and it's application. The Disaster Overall Prevention System for Beach Erosion is a coastal management system established for managing the implementation of long-term countermeasures to protect eroded beaches effectively in this study. Especially, the economic feasibility test and adaptive management for sustainable mitigation included in DOPS. The coastal prevention work applied to Namae beach is carried out by Disaster Overall Prevention System. Consequently, beach nourishment is proposed as a main countermeasure. Also, submerged artificial reefs and groin integrating artificial rock are proposed as secondary countermeasures for beach erosion. This resulted to be the optimal beach erosion countermeasure from DOPS, considering the economic and environmental conditions of the study area.

Hydraulic Resistance Characteristics of Compacted Weathered Granite Soil by Rotating Cylinder Test and Image Analysis (영상처리기법과 회전식 수리저항성능 실험을 이용한 다짐화강풍화토의 수리저항특성 분석)

  • Kim, Young Sang;Lim, Jae Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.25-34
    • /
    • 2016
  • Recently, in Korea, problems related with unstability of slope or sinkhole in urban area due to erosion of compacted granite soil which was used as a backfill or embankment material have been treated as important issues. Small hole might develop inside of backfill area due to erosion of not only weathered granite soil but also clay, silt, fine sand size particles when underground water flows. Once erosion starts in a soil mass, erosion rate increases gradually to cause rapid destruction. In this study, a rotating cylinder test (RCT) was performed to evaluate the hydraulic resistance characteristics of compacted weathered granite soil under various relative densities and preconsolidation pressures. Meanwhile, an image analysis method was introduced to analyze radius of irregularly eroded sample. It was found that image analysis is an effective means of minimizing the error in calculating a critical shear stress and threshold shear stress on the irregularly eroded sample. Furthermore, in general, hydraulic resistance capacity increases with the increase of relative density and preconsolidation pressure.

Electrical properties and a comparison of W/Cu and WC/Cu contacts (W/Cu 접점과 WC/Cu 접점의 전기적특성과 비교)

  • Lee, Hee-Woong;Pyun, Woo-Pong;Han, Se-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.05a
    • /
    • pp.43-45
    • /
    • 1988
  • Four W/Cu system(60wt%W-40wt%Cu, -0.lwt%Ni, -0.5wt%Ni, -0.lwt%C) and four WC/Cu system(60wt%WC-40wt%Cu, -0.lwt%Ni, -0.5wt%Ni, 0.lwt%C) electrical contacts were prepared by a press-sinter-infiltration process to compare with their properties. Hardness and electrical conductivity are proportional to the refractory metal(W or WC) properties and showed the effect of additives. Arc erosion trend of switch test is changed by current level. High currant test at 1kA showed a different crack formation pattern and erosion mode between W/Cu system and WC/Cu system contacts.

  • PDF

A Study on Ageing Characteristics of RTV Silicone Coating Materials by Corona Discharge (RTV 실리콘 코팅재의 코로나 방전 열화 특성)

  • 한세원;한동희;조한구
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.359-364
    • /
    • 2003
  • Ageing characteristics of RTV coating materials by corona discharge have been studied. The hydrophobicity recovery of RTV coating materials with 300${\mu}{\textrm}{m}$ thickness was identical with a bulk silicone materials. The RTV coating materials hydrophobicity has been almost lost when its were discharged during 40 seconds by corona discharge of 10㎸, and recovered after about 45 hours. The resistivity of RTV coating materials has not been recovered after 45 hours, though after 80 hours the initiation resistivity value has been recovered up to 95%. There was no critical change of compounds(such as Si and Al) on RTV surfaces by the corona discharge treatment until 100 seconds. In the test of arc erosion, it was seen that the coating sample with silicone rubber as a base material have more longer burn-out time than other samples with FRP or glass base.

Experimental Study for The Development of a Blower to Extend The Life of The Impeller and Reduce The Power Cost by Changing the Air Flow (공기흐름 변경으로 임펠러의 수명연장과 전력비 절감을 위한 송풍기 개발을 위한 실험적 연구)

  • Kim, Il-Gyoum;Park, Woo-Cheul;Sohn, Sang-Suk;Kim, Young-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.219-225
    • /
    • 2020
  • In this study, the prototype of a blower was designed and made to develop a long-life blower with a volume flow rate of 10,000 ㎥/min with a required total pressure efficiency of 83% or more. Five experimental impellers with various lengths of dust deflectors were manufactured and used for the erosion experiments. The erosion test was conducted by operating for 160 hours in a self-produced closed loop-type erosion test apparatus. A prototype of a model blower was designed, fabricated, and tested. The results revealed a total pressure, air volume flow rate, and efficiency of 690.6 mmAq, 16,243.6 ㎥/min, and 83.6%, respectively, as the result of conversion to a blower based on the measured value of the blower model. The prototype was designed and fabricated as the experimental erosion equipment of the blower. A blower with a dust deflector was developed by performing the erosion experiments under harsh conditions. The blower showed an improved effect of more than 190% based on the wear thickness of the impeller compared to a conventional blower without a dust deflector.

Model Experiment for Evaluating Internal Erosion Resistance Around Embankment Box-culvert Using Biopolymer T reated Soil (바이오폴리머 혼합토를 활용한 제방 통문 주위 내부침식 저항성 평가를 위한 모형실험)

  • Kim, Minjin;Moon, Junho;Kim, Chanhee;Kim, Younguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.65-70
    • /
    • 2021
  • River-side Embankment collapse involves various causes. The embankment collapse due to internal erosion around embedded structures reaches up to more than 10% in Korea. Many studies are being attempted to prevent from the collapse of the embankment rooted from overtopping and instability as well as internal erosion. One of them is the study on the application of biopolymers. The application of biopolymers to soils are divided into enhancing strength, vegetation and erosion resistance. This study investigated the effect of biopolymer treated soil on erosion resistance. The main goal of the study is to obtain basic data for real-scale experiments to verify the effectiveness of biopolymer treated soil embankment including a review of the collapse pattern in the model embankment with various test conditions. The optimized experimental conditions were selected by examining the erosion patterns according to each induction path with three compaction degree of the model embankment. As a result of the experiment, the internal erosion rate in the embankment to which the biopolymer treated soil was applied is greatly reduced, and it could be concluded that it might be applied to the actual embankment. However, in this study, the conclusion was drawn only within the scaled-down model embankment. In order to practically apply the biopolymer treated soil to the embankment, the study considering the scale effect would be needed.

Development of High Erosion Resistant Fe-based Alloy for Continuous Hot Dipping Line (연속용융 도금라인 용 고내침식 Fe계 합금 개발)

  • Baek, Min-Sook;Kim, Yong-Cheol;Baek, Kyeong-Cheol;Kwak, Joon-Seop;Yoon, Dong-Joo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.3
    • /
    • pp.95-103
    • /
    • 2020
  • In this study, the material used in the hot dip galvanizing equipment was poorly corrosion-resistant, so it was performed to solve the cost and time problems caused by equipment replacement. The theoretical calculation was performed using the DV-Xα method(Discrete Variational Local-density approximation method). The alloy (STS4XX series) of the equipment currently used has a martensite phase. Therefore, the theoretical calculation was performed by applying P4 / mmm, which is a tetragonal structure. The new alloy was chosen by designing theoretical values close to existing materials. Considering elements that contribute to corrosion, most have high prices. Therefore, the design was completed by adjusting the content using only the components of the reference material in the theoretical design. The final design alloys were chosen as D6 and D9. Designed D6 and D9 were dissolved and prepared using an induction furnace. After the heat treatment process was completed, the corrosion rate of the alloys was confirmed by using the potentiodynamic polarization test. The surface of the prepared alloys were processed horizontally and then polished to # 1200 using sand paper to perform potentiodynamic polarization test. Domestic products: 4.735 mpy (mils / year), D6: 0.9166 mpy, D9: 0.3372 mpy, alloys designed than domestic products had a lower corrosion rate. Therefore, the designed alloy was expected to have better erosion resistance.

Laboratory Performance Evaluation of Alternative Dowel Bar for Jointed Concrete Pavements (콘크리트 포장용 고내구성 대체 다웰바의 실내공용성 평가)

  • Park, Seong Tae;Park, Jun Young;Lee, Jae Hoon;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-36
    • /
    • 2013
  • PURPOSES: The problem under this circumstance is that the erosion not only drops strength of the steel dowel bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem, alternative dowers bars are developed. METHODS: In this study, the bearing stresses between the FRP tube dowel bar and concrete slab are calculated and compared with its allowable bearing stress to check its structural stability in the concrete pavement. These comparisons are conducted with several cross-sections of FRP tube dowel bars. Comprehensive laboratory tests including the shear load-deflection test on a full-scale specimen and the full-scale accelerated joint concrete pavement test are conducted and the results were compared with those from the steel dowel bar. RESULTS: In all cross-sections of FRP tube dowel bars, computed bearing stresses between the FRP tube dowel bar and concrete slab are less than their allowable stress levels. The pultrusion FRP-tube dowel bar show better performance on direct shear tests on full-scale specimen and static compression tests at full-scale concrete pavement joints than prepreg and filament-winding FRP-tube dowel bar. CONCLUSIONS: The FRP tube dowel bars as alternative dowel bar are invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Also, the pultrusion FRP-tube dowel bar performed very well on the laboratory evaluation.

Research about Size Effect of Solid Particles on Erosion Resistance of Aluminum Alloy and Infrared Windows (충돌 입자의 크기에 따른 알루미늄 합금과 적외선창의 입자침식 저항성 연구)

  • Hong, Yun Ky;Moon, Kwan Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1027-1034
    • /
    • 2016
  • In this research, experimental study about size effect of solid particles on erosion resistance is presented. A high-density polyethylene particle with a mm-sized diameter is accelerated using a two-stage light gas gun up to Mach number of approximately 3.0. An accelerated particle impacts aluminum alloy such as Al1050 and Al6061 T6, and infrared windows such as ZnS and sapphire specimens. For the aluminum alloy, craters that form on the surface of the specimens are measured to characterize the erosion resistance of the material. For the infrared windows, repetitive tests are conducted until a linear or circumferential crack is found to create damage threshold curves that define a material's erosive resistance. From the comparison of test data for various sizes of high-density polyethylene particles, it is found that erosion resistance of material is linearly dependent on the size of particles.