• Title/Summary/Keyword: erosion control dam maintenance

Search Result 4, Processing Time 0.018 seconds

Analysis of design method on closed-type erosion control dam (불투과형 사방댐에 대한 설계기준 분석)

  • Kim, Woon-Hyung;Song, Byung-Woong;Kim, Burm-Suck
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.911-920
    • /
    • 2010
  • A closed-type erosion control dam were suggested as an effective method to protect from debris flow damages caused by seasonal rainstorm, typhoon, and local heavy rain. However, design method on a closed-type erosion control dam currently practiced in the engineering is not well established with respect to type of the dam, design parameters, maintenance and so forth. In this study, design parameters for closed-type erosion control dam were evaluated and the comparison of design parameters used in Korea and Japan was performed. Based on the results of this study, modification of design method for closed-type erosion control dam are recommended.

  • PDF

A Study on the Management Guidelines of Erosion Control Facilities in National Forests (I) - The Inspection Results of Erosion Control Facilities from 2009 to 2011 - (국유림 내 사방시설 관리방안에 관한 연구(I) - 2009~2011년 국유림 내 사방시설 점검 결과를 중심으로 -)

  • Lee, Sang-Ho;Jung, Cha-Sik;Kim, Jeong-Sig;Jung, Ho-Jin;Kim, Min-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.251-258
    • /
    • 2012
  • This study was conducted to analyze field inspection results of erosion control facilities within national forests and to suggest maintenance and management plan of erosion control facilities. The objects amounted to a total of 1,628 locations, comprising 308 erosion control dams and 1,320 erosion control areas (1,269.05 ha). The field inspections were conducted during March-June each year. The erosion control dams inspected were constructed during 1991-2005, with 96.4% of them, or 297 dams, constructed in or after 2000. The erosion control areas were constructed during 1986-2005, with 68.6% of them, or 903 areas, constructed in or after 2000. As for erosion control dams, there were 205 concrete erosion control dams and 68 concrete with boulder pitching erosion control dams, respectively, with 296 out of a total of 308 erosion control dams in a good condition. As for erosion control areas, there were many erosion control structures using stone masonry works and gabions, with 1,245 out of a total of 1,320 (94.3%) erosion control areas in a good condition. Overall, erosion control facilities within national forests were in a good condition, amply fulfilling their functions. As for erosion control facilities in a bad condition, they must be made to accomplish the goals of erosion control works through supplementation and repairs without fail. In addition, for the systematic maintenance and management of existing erosion control facilities and erosion control facilities constructed in the future as part of erosion control works, the construction of an erosion control facility management system is urgently needed.

A Statistical Analysis of Results of Detailed Inspections on Aged Concrete Erosion Control Dams in Gyeongsangbuk-do (경상북도 지역 노후 콘크리트사방댐 정밀점검 결과의 통계적 분석)

  • Kim, Jeongsig;Kim, Dongyeob
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.276-286
    • /
    • 2022
  • We carried out this study to provide basic data necessary to establish a management plan for concrete erosion control dams in the future by analyzing results of detailed inspections of aged dams conducted in accordance with 「Guidelines for the Maintenance of the Erosion Control Facility」. We analyzed the results of a detailed inspection of 54 concrete erosion control dams which had been built over 20 years previously, located in private forests of Gyeongsangbuk-do using statistical methods. Having conducted exterior defect investigations, we found 18 dams (33.4%) in need of repair or follow-up measures and 15 dams in which the overall grade was changed due to investigator's corrections; we therefore considered that standardization of related standards and indicators would be necessary. After conducting concrete compression strength tests, we found 19 dams (35.2%) to be below the standard value of 21 MPa, and in particular, we included, in grade A, eight dams which we judged to be in good condition as a result of the exterior defect inspection. There was little clear correlation between the total score and the compressive strength of concrete, but there was a statistically significant difference in the compressive strength by overall grade. After analyzing the changes in the characteristics of the erosion control dams according to the elapsed years after construction, we detected no particular trend in the changes of total score and compressive strength over time. However, the cumulative ratio of the dams that required repair and follow-up measures and the dams below the compression strength standard had a strong positive linear relationship over time, suggesting that it would be possible to identify the aging characteristics of concrete erosion control dams.

Estimation of sediment deposition rate in collapsed reservoirs(wetlands) using empirical formulas and multiple regression models (경험공식 및 다중회귀모형을 이용한 붕괴 저수지(습지) 비퇴사량 추정)

  • Kim, Donghyun;Lee, Haneul;Bae, Younghye;Joo, Hongjun;Kim, Deokhwan;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.287-295
    • /
    • 2021
  • As facilities such as dam reservoir wetlands and agricultural irrigation reservoir wetlands are built, sedimentation occurs over time through erosion, sedimentation transport, and sediment deposition. Sedimentation issues are very important for the maintenance of reservoir wetlands because long-term sedimentation of sediments affects flood and drought control functions. However, research on resignation has been estimated mainly by empirical formulas due to the lack of available data. The purpose of this study was to calculate and compare the sediment deposition rate by developing a multiple regression model along with actual data and empirical formulas. In addition, it was attempted to identify potential causes of collapse by applying it to 64 reservoir wetlands that suffered flood damage due to the long rainy season in 2020 due to reservoir wetland sedimentation and aging. For the target reservoir, 10 locations including the GaGog reservoir located in Miryang city, Gyeongsangnam province in South Korea, where there is actual survey information, were selected. A multiple regression model was developed in consideration of physical and climatic characteristics, and a total of four empirical formulas and sediment deposition rate were calculated. Using this, the error of the sediment deposition rate was compared. As a result of calculating the sediment deposition rate using the multiple regression model, the error was the lowest from 0.21(m3km2/yr) to 2.13(m3km2/yr). Therefore, based on the sediment deposition rate estimated by the multi-regression model, the change in the available capacity of reservoir wetlands was analyzed, and the effective storage capacity was found to have decreased from 0.21(%) to 16.56(%). In addition, the sediment deposition rate of the reservoir where the overflow damage occurred was relatively higher than that of the reservoir where the piping damage occurred. In other words, accumulating sediment deposition rate at the bottom of the reservoir would result in a lack of acceptable effective water capacity and reduced reservoir flood and drought control capabilities, resulting in reservoir collapse damage.