• Title/Summary/Keyword: ergodic theory

Search Result 12, Processing Time 0.017 seconds

A TOPOLOGICAL PROOF OF THE PERRON-FROBENIUS THEOREM

  • Ghoe, Geon H.
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.565-570
    • /
    • 1994
  • In this article we prove a version of the Perron-Frobenius Theorem in linear algebra using the Brouwer's Fixed Point Theorem in topology. We will mostly concentrate on he qualitative aspect of the Perron-Frobenius Theorem rather than quantitative formulas, which would be enough for theoretical investigations in ergodic theory. By the nature of the method of the proof, we do not expect to obtain a numerical estimate. But we may regard it worthwhile to see why a certain type of result should be true from a topological and geometrical viewpoint. However, a geometric argument alone would give us a sharp numerical bounds on the size of the eigenvalue as shown in Section 2. Eigenvectors of a matrix A will be fixed points of a certain mapping defined in terms of A. We shall modify an existing proof of Frobenius Theorem and that will do the trick for Perron-Frobenius Theorem.

  • PDF

CHARACTERIZATION OF TEMPERED EXPONENTIAL DICHOTOMIES

  • Barreira, Luis;Rijo, Joao;Valls, Claudia
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.171-194
    • /
    • 2020
  • For a nonautonomous dynamics defined by a sequence of bounded linear operators on a Banach space, we give a characterization of the existence of an exponential dichotomy with respect to a sequence of norms in terms of the invertibility of a certain linear operator between general admissible spaces. This notion of an exponential dichotomy contains as very special cases the notions of uniform, nonuniform and tempered exponential dichotomies. As applications, we detail the consequences of our results for the class of tempered exponential dichotomies, which are ubiquitous in the context of ergodic theory, and we show that the notion of an exponential dichotomy under sufficiently small parameterized perturbations persists and that their stable and unstable spaces are as regular as the perturbation.