• Title/Summary/Keyword: erasure recovery

Search Result 11, Processing Time 0.019 seconds

On Estimation of Redundancy Information Transmission based on Systematic Erasure code for Realtime Packet Transmission in Bursty Packet Loss Environments. (연속 패킷 손실 환경에서 실시간 패킷 전송을 위한 systematic erasure code의 부가 전송량 추정 방법)

  • 육성원;강민규;김두현;신병철;조동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1824-1831
    • /
    • 1999
  • In this paper, the data recovery performance of systematic erasure codes in burst loss environments is analyzed and the estimation method of redundant data according to loss characteristics is suggested. The burstness of packet loss is modeled by Gilbert model, and the performance of proposed packet loss recovery method in the case of using systematic erasure code is analyzed based on previous study on the loss recovery in the case of using erasure code. The required redundancy data fitting method for systematic erasure code in the condition of given loss property is suggested in the consideration of packet loss characteristics such as average packet loss rate and average loss length.

  • PDF

Enhanced Upper Bound for Erasure Recovery in SPC Product Codes

  • Muqaibel, Ali
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.518-524
    • /
    • 2009
  • Single parity check (SPC) product codes are simple yet powerful codes that are used to correct errors and/or recover erasures. The focus of this paper is to evaluate the performance of such codes under erasure scenarios and to develop a closed-form tight upper bound for the post-decoding erasure rate. Closed-form exact expressions are derived for up to seven erasures. Previously published closed-form bounds assumed that all unrecoverable patterns should contain four erasures in a square. Additional non-square patterns are accounted for in the proposed expressions. The derived expressions are verified using exhaustive search. Eight or more erasures are accounted for by using a bound. The developed expressions improve the evaluation of the recoverability of SPC product codes without the need for simulation or search algorithms, whether exhaustive or novel.

HRSF: Single Disk Failure Recovery for Liberation Code Based Storage Systems

  • Li, Jun;Hou, Mengshu
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.55-66
    • /
    • 2019
  • Storage system often applies erasure codes to protect against disk failure and ensure system reliability and availability. Liberation code that is a type of coding scheme has been widely used in many storage systems because its encoding and modifying operations are efficient. However, it cannot effectively achieve fast recovery from single disk failure in storage systems, and has great influence on recovery performance as well as response time of client requests. To solve this problem, in this paper, we present HRSF, a Hybrid Recovery method for solving Single disk Failure. We present the optimal algorithm to accelerate failure recovery process. Theoretical analysis proves that our scheme consumes approximately 25% less amount of data read than the conventional method. In the evaluation, we perform extensive experiments by setting different number of disks and chunk sizes. The results show that HRSF outperforms conventional method in terms of the amount of data read and failure recovery time.

An adaptive fault tolerance strategy for cloud storage

  • Xiai, Yan;Dafang, Zhang;Jinmin, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5290-5304
    • /
    • 2016
  • With the growth of the massive amount of data, the failure probability of the cloud storage node is becoming more and more big. A single fault tolerance strategy, such as replication and erasure codes, has some unavoidable disadvantages, which can not meet the needs of the today's fault tolerance. Therefore, according to the file access frequency and size, an adaptive hybrid redundant fault tolerance strategy is proposed, which can dynamically change between the replication scheme and erasure codes scheme throughout the lifecycle. The experimental results show that the proposed scheme can not only save the storage space(reduced by 32% compared with replication), but also ensure the fast recovery of the node failures(increased by 42% compared with erasure codes).

VQ Codebook Index Interpolation Method for Frame Erasure Recovery of CELP Coders in VoIP

  • Lim Jeongseok;Yang Hae Yong;Lee Kyung Hoon;Park Sang Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.877-886
    • /
    • 2005
  • Various frame recovery algorithms have been suggested to overcome the communication quality degradation problem due to Internet-typical impairments on Voice over IP(VoIP) communications. In this paper, we propose a new receiver-based recovery method which is able to enhance recovered speech quality with almost free computational cost and without an additional increment of delay and bandwidth consumption. Most conventional recovery algorithms try to recover the lost or erroneous speech frames by reconstructing missing coefficients or speech signal during speech decoding process. Thus they eventually need to modify the decoder software. The proposed frame recovery algorithm tries to reconstruct the missing frame itself, and does not require the computational burden of modifying the decoder. In the proposed scheme, the Vector Quantization(VQ) codebook indices of the erased frame are directly estimated by referring the pre-computed VQ Codebook Index Interpolation Tables(VCIIT) using the VQ indices from the adjacent(previous and next) frames. We applied the proposed scheme to the ITU-T G.723.1 speech coder and found that it improved reconstructed speech quality and outperforms conventional G.723.1 loss recovery algorithm. Moreover, the suggested simple scheme can be easily applicable to practical VoIP systems because it requires a very small amount of additional computational cost and memory space.

Data Access Frequency based Data Replication Method using Erasure Codes in Cloud Storage System (클라우드 스토리지 시스템에서 데이터 접근빈도와 Erasure Codes를 이용한 데이터 복제 기법)

  • Kim, Ju-Kyeong;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.85-91
    • /
    • 2014
  • Cloud storage system uses a distributed file system for storing and managing data. Traditional distributed file system makes a triplication of data in order to restore data loss in disk failure. However, enforcing data replication method increases storage utilization and causes extra I/O operations during replication process. In this paper, we propose a data replication method using erasure codes in cloud storage system to improve storage space efficiency and I/O performance. In particular, according to data access frequency, the proposed method can reduce the number of data replications but using erasure codes can keep the same data recovery performance. Experimental results show that proposed method improves performance in storage efficiency 40%, read throughput 11%, write throughput 10% better than HDFS does.

Reliable Data Transmission Based on Erasure-resilient Code in Wireless Sensor Networks

  • Lei, Jian-Jun;Kwon, Gu-In
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.62-77
    • /
    • 2010
  • Emerging applications with high data rates will need to transport bulk data reliably in wireless sensor networks. ARQ (Automatic Repeat request) or Forward Error Correction (FEC) code schemes can be used to provide reliable transmission in a sensor network. However, the naive ARQ approach drops the whole frame, even though there is a bit error in the frame and the FEC at the bit level scheme may require a highly complex method to adjust the amount of FEC redundancy. We propose a bulk data transmission scheme based on erasure-resilient code in this paper to overcome these inefficiencies. The sender fragments bulk data into many small blocks, encodes the blocks with LT codes and packages several such blocks into a frame. The receiver only drops the corrupted blocks (compared to the entire frame) and the original data can be reconstructed if sufficient error-free blocks are received. An incidental benefit is that the frame error rate (FER) becomes irrelevant to frame size (error recovery). A frame can therefore be sufficiently large to provide high utilization of the wireless channel bandwidth without sacrificing the effectiveness of error recovery. The scheme has been implemented as a new data link layer in TinyOS, and evaluated through experiments in a testbed of Zigbex motes. Results show single hop transmission throughput can be improved by at least 20% under typical wireless channel conditions. It also reduces the transmission time of a reasonable range of size files by more than 30%, compared to a frame ARQ scheme. The total number of bytes sent by all nodes in the multi-hop communication is reduced by more than 60% compared to the frame ARQ scheme.

IR-RBT Codes: A New Scheme of Regenerating Codes for Tolerating Node and Intra-node Failures in Distributed Storage Systems

  • Bian, Jianchao;Luo, Shoushan;Li, Wei;Zha, Yaxing;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5058-5077
    • /
    • 2019
  • Traditional regenerating codes are designed to tolerate node failures with optimal bandwidth overhead. However, there are many types of partial failures inside the node, such as latent sector failures. Recently, proposed regenerating codes can also repair intra-node failures with node-level redundancy but incur significant bandwidth and I/O overhead. In this paper, we construct a new scheme of regenerating codes, called IR-RBT codes, which employs intra-node redundancy to tolerate intra-node failures and serve as the help data for other nodes during the repair operation. We propose 2 algorithms for assigning the intra-node redundancy and RBT-Helpers according to the failure probability of each node, which can flexibly adjust the helping relationship between nodes to address changes in the actual situation. We demonstrate that the IR-RBT codes improve the bandwidth and I/O efficiency during intra-node failure repair over traditional regenerating codes but sacrifice the storage efficiency.

On Recovering Erased RSA Private Key Bits

  • Baek, Yoo-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.11-25
    • /
    • 2018
  • While being believed that decrypting any RSA ciphertext is as hard as factorizing the RSA modulus, it was also shown that, if additional information is available, breaking the RSA cryptosystem may be much easier than factoring. For example, Coppersmith showed that, given the 1/2 fraction of the least or the most significant bits of one of two RSA primes, one can factorize the RSA modulus very efficiently, using the lattice-based technique. More recently, introducing the so called cold boot attack, Halderman et al. showed that one can recover cryptographic keys from a decayed DRAM image. And, following up this result, Heninger and Shacham presented a polynomial-time attack which, given 0.27-fraction of the RSA private key of the form (p, q, d, $d_p$, $d_q$), can recover the whole key, provided that the given bits are uniformly distributed. And, based on the work of Heninger and Shacham, this paper presents a different approach for recovering RSA private key bits from decayed key information, under the assumption that some random portion of the private key bits is known. More precisely, we present the algorithm of recovering RSA private key bits from erased key material and elaborate the formula of describing the number of partially-recovered RSA private key candidates in terms of the given erasure rate. Then, the result is justified by some extensive experiments.

Deployment Strategies of Cloud Computing System for Defense Infrastructure Enhanced with High Availability (고가용성 보장형 국방 클라우드 시스템 도입 전략)

  • Kang, Ki-Wan;Park, Jun-Gyu;Lee, Sang-Hoon;Park, Ki-Woong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.3
    • /
    • pp.7-15
    • /
    • 2019
  • Cloud computing markets are rapidly growing as cost savings and business innovation are being carried out through ICT worldwide. In line with this paradigm, the nation is striving to introduce cloud computing in various areas, including the public sector and defense sector, through various research. In the defense sector, DIDC was established in 2015 by integrating military, naval, air and military computing centers, and it provides cloud services in the form of IaaS to some systems in the center. In DIDC and various future cloud defense systems, It is an important issue to ensure availability in cloud defense systems in the defense sector because system failures such as network delays and system resource failures are directly linked to the results of battlefields. However, ensuring the highest levels of availability for all systems in the defense cloud can be inefficient, and the efficiency that can be gained from deploying a cloud system can be reduced. In this paper, we classify and define the level of availability of defense cloud systems step by step, and propose the strategy of introducing Erasure coding and failure acceptance systems, and disaster recovery system technology according to each level of availability acquisition.