• 제목/요약/키워드: equivalent moduli

검색결과 28건 처리시간 0.023초

유한요소해석을 이용한 다상의 초전도 코일에 대한 기계적 열적 등가 물성 (Equivalent Mechanical and Thermal Properties of Multiphase Superconducting Coil Using Finite Element Analysis)

  • 사정우;허남일;최창호;오영국;조승연;도철진;권면;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.975-980
    • /
    • 2001
  • Like composite material. the coil winding pack of the KSTAR (Korea Superconducting Tokamak Advanced Research) consist of multiphase element such as metallic jacket material for protecting superconducting cable, vacuum pressurized imprepregnated (VPI) insulation, and corner roving filler. For jacket material, four CS (Central Solenoid) Coils, $5^{th}$ PF (Poloidal Field) Coil, and TF (Toroidal Field Coil) use Incoloy 908 and $6-7^{th}$ PF coil, Cold worked 316LN. In order to analyze the global behavior of large coil support structure with coil winding pack, it is required to replace the winding pack to monolithic matter with the equivalent mechanical properties, i.e. Young's moduli, shear moduli due to constraint of total nodes number and element numbers. In this study, Equivalent Young's moduli, shear moduli, Poisson's ratio, and thermal expansion coefficient were calculated for all coil winding pack using Finite Element Method.

  • PDF

Viscoelastic behaviour of non-homogeneous variable-section beams with post-poned restraints

  • Alessandra, Fiore;Monaco, Pietro;Raffaele, Domenico
    • Computers and Concrete
    • /
    • 제9권5호
    • /
    • pp.357-374
    • /
    • 2012
  • The aim of this paper is to develop a procedure able to calculate the long-term stress and strain patterns in modern prestressed composite structures which are largely influenced by creep and shrinkage and whose final static configuration is the result of many phases of loading and restraints conditions. The introduction of equivalent moduli, depending on the viscous and elastic features of materials, can guarantee a significant simplification of the problem presented above. The proposed calculation model has been used to design the "Quattroquercie Viaduct" located on the highway "A3" Salerno-Reggio Calabria, Italy.

P.C. 대형판 구조의 수평접합부 압축거동에 관한 실험적 연구 (Experimental Study on the Compressive Behavior of Horizontal Joint in Precast Concrete Large Panel Structure)

  • 조양호;이한선;김현산
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.19-24
    • /
    • 1994
  • Four types of horizontal joint were tested to investigate the difference with regards to the compressive behavior and strength. These include wedge-type joints (i)with and (ii)without transverse reinforcement against splitting failure of the panel concrete, and wedge-type joints (iii)with different widths of joint concrete (6cm vs 8cm) and (iv)closed platform joint. It was shown that the compressive strength of wedge-type joint is about 10% higher than that of closed-type (platform) joint. But the effect of transverse reinforcement and joint concrete widths on the strength of the joints turned out be negligible. Also, the moduli of elasticity in panel and joint are compared and the equivalent moduli of the whole wall are derived.

  • PDF

Investigation of masonry elasticity and shear moduli using finite element micro-models

  • Mavrouli, O.A.;Syrmakezis, C.A.
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.171-182
    • /
    • 2008
  • In this paper, a methodology for the estimation of masonry elasticity and shear moduli is presented, for linear elasticity considerations. The methodology is based on the assumption that for a "periodic" masonry wall, which is formed by the repetition of a basic unit containing blocks and mortar, the mechanical characteristics of the unit are representative of the characteristics of the entire wall. For their calculation, the finite element analysis method is used. A micro-model with finite elements simulating separately the blocks and the mortar is developed. An equivalent finite element model, using an homogenous material is also developed and assuming equivalence of strains for the two models, the homogenous material properties are estimated. The efficiency of the method and its applicability limits are investigated.

ON THE HOMOLOGY OF THE MODULI SPACE OF $G_2$ INSTANTONS

  • Park, Young-Gi
    • 대한수학회논문집
    • /
    • 제9권4호
    • /
    • pp.933-944
    • /
    • 1994
  • Let $\pi : P \to S^4$ be a principal G-bundle over $S^4$ whose the structure group G is a compact, connected, simple Lie group. Since $\pi_3(G) = \pi_4 (BG) = Z$, we can classify the principal bundle $P_k$ over $S^4$ by the map $S^4 \to BG$ of degree k. Atiyah and Jones [2] showed that $C_k = A_k/g^b_k$ is homotopy equivalent to $\Omega^3_k G \simeq \Omega^4_k BG$ where $A_k$ is the space of the all connections in $P_k$ and $g^b_k$ is the based gauge group which consists of all base point preserving automorphisms on $P_k$. Here $\Omega^nX$ is the space of all base-point preserving continuous map from $S^n$ to X. Let $M_k$ be the space of based gauge equivalence classes of all connections in $P_k$ satisfying the Yang-Mills self-duality equations, which we call the moduli space of G instantons.

  • PDF

Layered model of aging concrete. General concept and one-dimensional applications

  • Truty, Andrzej;Szarlinski, Jan;Podles, Krzysztof
    • Computers and Concrete
    • /
    • 제17권6호
    • /
    • pp.703-721
    • /
    • 2016
  • A novel approach to modeling concrete behavior at the stage of its maturing is presented in this paper. This approach assumes that at any point in the structure, concrete is composed of a set of layers that are activated in time layer by layer, based on amount of released heat that is produced during process of the concrete's maturing. This allows one to assume that each newly created layer has nominal stiffness moduli and tensile/compressive strengths. Hence introduction of explicit stiffness moduli and tensile/compressive strength dependencies on time, or equivalent time state parameter, is not needed. Analysis of plain concrete (PC) and reinforced concrete (RC) structures, especially massive ones, subjected to any kind of straining in their early stage of existence, mostly due to external loads but especially by thermal loading and shrinkage, is the goal of the approach. In this article a simple elasto-plastic softening model with creep is used for each layer and a general layered model behavior is illustrated on one-dimensional (1D) examples.

New Evaluation and Test of Sidewall's Rotational Stiffness of Radial Tire

  • Kim Young-Woo;Kim Yong-Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.748-758
    • /
    • 2006
  • In this paper, we have revisited the estimation of the rotational stiffness of sidewall of radial tire and have suggested a new method for evaluation of the rotational stiffness. Since thicknesses, and volume fractions of the constituents of sidewall are varied depending on radial position, the equivalent shear modulus of the sidewall also depends on radial position. For the estimation of rotational stiffness of sidewall's rubber, we have divided its cross-section into sufficient numbers of small parts and have calculated the equivalent shear modulus of each part of sidewall. Using the shear moduli of divided parts, we have obtained the rotational stiffness by employing in-plane shear deformation theory. This method is expected to be a useful tool in tire design since it relates such basic variables to the global stillness of tire. Applying the calculation method to a radial tire of P205/60R15, we have compared its rotational stiffness with experimental one.

등가 물성 평가를 이용한 골판지의 물성치 (The Mechanical Properties of Corrugated Cardboard using Equivalent Evaluation)

  • 권경영;정종윤
    • 산업경영시스템학회지
    • /
    • 제37권1호
    • /
    • pp.157-164
    • /
    • 2014
  • The usage of corrugated cardboard for packing material is increasing in these days because it is light and easy to manufacture packing boxes. However, the structure analysis of packing boxes, made of cardboard, is not well carried. The reason can be deduced that its mechanical properties for structure analysis are not well known. The cardboards are made different shapes with various types of raw materials that are paper-based compound. In addition, the cardboards are considered to be orthotropic material. This research finds mechanical properties of triple layered cardboard which is composed of outer liner and inner liner. The moduli of elasticity and of shear for liners are found from tension test and T-Peel test. The mechanical properties of the cardboard are calculated using the super position method and equivalent evaluation method.

Transient stochastic analysis of nonlinear response of earth and rock-fill dams to spatially varying ground motion

  • Haciefendioglu, Kemal
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.647-664
    • /
    • 2006
  • The main purpose of this paper is to investigate the effect of transient stochastic analysis on nonlinear response of earth and rock-fill dams to spatially varying ground motion. The dam models are analyzed by a stochastic finite element method based on the equivalent linear method which considers the nonlinear variation of soil shear moduli and damping ratio as a function of shear strain. The spatial variability of ground motion is taken into account with the incoherence, wave-passage and site response effects. Stationary as well as transient stochastic response analyses are performed for the considered dam types. A time dependent frequency response function is used throughout the study for transient stochastic responses. It is observed that stationarity is a reasonable assumption for earth and rock-fill dams to typical durations of strong shaking.

지반-구조물 상호작용계의 계수추정 및 비선형 지진응답해석 (Parameter Identification and Nonlinear Seismic Analysis of Soil-Structure Interaction System)

  • 윤정방
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.265-272
    • /
    • 1997
  • This paper presents the result of an international cooperative research on the post-correlation analysis of forced vibration tests and the prediction of earthquake responses of a large-scale seismic test structure. Through the post-correlation analysis, the properties of the soil layers are revised so that the best correlation in the responses may be obtained compared with the measured force vibration test data. Utilizing the revised soil properties as the initial linear values, the seismic responses are predicted for an earthquake using the equivalent linearlization technique based on the specified strain dependent characteristics of the shear moduli and damping ratios. It has been found that the predicted responses by the equivalent nonlinear procedure are in excellent agreement with the observed responses, which those using the initial properties are fairly off from the measured results.

  • PDF