• Title/Summary/Keyword: equivalent magnetizing current

Search Result 21, Processing Time 0.033 seconds

New Force Expression on Dielectrics: Equivalent Electrifying Current Method

  • Choi, Hong-Soon;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2262-2267
    • /
    • 2017
  • A new force expression on dielectrics subjected to electric field is proposed in this paper. It is the electric version of the equivalent magnetizing current method in magnetic field. From the idea of electromagnetic duality, virtual equivalent electrifying magnetic current method is conjectured in the field of dielectric force problem. Numerical results show that the proposed method has good agreements with the conventional methods. The merits and demerits of the proposed method are also discussed.

Analysis on magnetizing characteristics of current limiting reactor using HTSC module

  • Han, Tae Hee;Lim, Sung Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.1
    • /
    • pp.15-18
    • /
    • 2018
  • In this paper, the magnetizing characteristics of the current limiting reactor (CLR) using $high-T_C$ superconducting (HTSC) module were analyzed. Since the saturation of iron core comprising the CLR using HTSC module deteriorates its current limiting operation, the design of the CLR using HTSC module considering the magnetizing characteristics is needed. For the analysis on the magnetizing characteristics, the flux linkage and the magnetizing current of this CLR using HTSC module were derived from its electrical equivalent circuit. Through the analysis on the linkage flux versus the magnetizing current, obtained from the short-circuit tests, the suppressing effect of the iron core's saturation was discussed.

Fault Current Limiting and Magnetizing Characteristics of the Autotransformer Type SFCL

  • Park, Min Ki;Lim, Sung Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.159-162
    • /
    • 2017
  • In designing the autotransformer type superconducting fault-current limiter (SFCL), one must consider that the iron core can be saturated for the SFCL to have effective fault-current limiting operation. In this paper, to examine the saturation of the iron core comprising SFCL during the fault period, the linkage flux and the magnetizing current of the SFCL were derived from the electrical equivalent circuit with the nonlinear exciting branch. By analysis on the linkage flux versus the magnetizing current of the autotransformer type SFCL, calculated from the short-circuit tests, the design condition for the suppression of the iron core's saturation was discussed.

Optimal Coil Configuration Design Methodology Using the Concept of Equivalent Magnetizing Current (등가자화전류를 이용한 최적코일형상 설계방법)

  • Kim, Woo-Chul;Kim, Min-Tae;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.43-49
    • /
    • 2007
  • A new electric coil design methodology using the notion of topology optimization is developed. The specific design problem in consideration is to find optimal coil configuration that maximizes the Lorentz force under given magnetic field. Topology optimization is usually formulated using the finite element method, but the novel feature of this method is that no such partial differential equation solver is employed during the whole optimization process. The proposed methodology allows the determination of not only coil shape but also the number of coil turns which is not possible to determine by any existing topology optimization concept and to perform single coil strand identification algorithm. The specific applications are made in the design of two-dimensional fine-pattern focusing coils of an optical pickup actuator. In this method, the concept of equivalent magnetizing current is utilized to calculate the Lorentz force, and the optimal coil configuration is obtained without any initial layout. The method is capable of generating the location and shape of turns of coil. To confirm the effectiveness of the proposed method in optical pickup applications, design problems involving multipolar permanent magnets are considered.

An Observation of Unified Force Expression in The Cylindrical Magnetic Material with a Vertical Current Running Through Its Center (전류가 관통하는 원통형 자성체에 미치는 전자기력식의 통일성에 대한 고찰)

  • Choi, Hong-Soon
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.174-179
    • /
    • 2011
  • Magnetic force calculation methods such as Maxwell stress, virtual work principle, equivalent magnetic charge, and equivalent magnetizing current are widely used until now. The force density is still controversial issue even though it is common sense that all of these methods have legitimate results. The surface force densities of each method are quite different with each other in the point of numerical result and final expression. In this paper, it is shown that a unified expression of body force density is derived using virtual air-gap scheme for an analytic model in which cylindrical magnetic material with a vertical current runs through its center.

Space Harmonic Analysis of PM type LSM taking into account Slot by Equivalent Magnetizing Current (등가자화전류를 이용한 영구자석형 선형동기전동기의 슬롯을 고려한 공간고조파해석)

  • Jo, Jae-Ok;Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.192-194
    • /
    • 1997
  • This paper propose an efficient space harmonic analysis method for magnetic field. Permanent magnet and primary core considered slot are replaced by EMC(equivalent magnetizing current). And the resultant air gap flux density is calculated by superposition due to the permanent magnet and EMC. We analyze the harmonic distribution of air gap flux density taking into account slot for PMLSM.

  • PDF

Analysis of Static Characteristics of PMLSM Using Space Harmonic Analysis Considering Slot Structure (공간고조파법을 이용한 영구자석 선형 동기전동기의 슬롯을 고려한 정특성 해석)

  • Im, Gi-Chae;Hong, Jeong-Pyo;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.145-151
    • /
    • 1999
  • This paper presents the characteristic analysis method of PMLSM based on the Space Harmonic Analysis method considering the effect of stator slots. The magnetic field for unslotted primary can be easily calculated by the conventional space harmonic analysis method and the resultant magnetic field including slot effect is obtained using the concept of the virtual Equivalent Magnetizing Current(EMC) on primary core. And the influence of space harmonics in airgap flux density and static thrust due to slots is evaluated. In this paper, the results of the analytical method are compared with not only the experimental ones but ones of FEM to verify the validity of the proposed method.

  • PDF

Equivalent Circuit Analysis of Single Phase Induction Motor Considering Magnetic Saturation Characteristics (자기포화 특성을 고려한 단상유도전동기의 등가회로 해석)

  • Kim, Young Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.270-277
    • /
    • 2013
  • Single phase induction motor(SPIM) is used widely because it is driven by single phase source. However, the efficiency of the motor is not good due to saturation of magnetic material. To analyze the motor accurately, the magnetic saturation characteristics should be considered in analysis of equivalent circuit. In this paper, lumped parameter of circuit are derived from multi phase induction motor using method of symmetrical coordinates. Also, we presents a method for the equivalent circuit analysis of SPIM using magnetic saturation rate. The magnetic nonlinearity is considered deriving magnetizing reactance from voltage-current saturation curve. As a results, current characteristic, torque, output and efficiency are shown through analysis of equivalent circuit. A simulation results of SPIM will be used to improve the characteristics and efficiency of motor.

Design and Dynamic Analysis of Air-core Coil type Linear DC Motor (공심 코일형 리니어 DC 모터의 설계 및 동특성 해석)

  • Gang, Gyu-Hong;Hong, Jeong-Pyo;Kim, Gyu-Tak;Ha, Geun-Su;Jeong, Jung-Gi;Im, Tae-Bin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.165-171
    • /
    • 2000
  • This paper proposes a technique to design of air-core type Linear DC Motor(LDM) by using Equivalent Magnetizing Current(EMC) method and has performed its dynamic analysis. The magnetic flux density differ in accordance with airgap position due to difference of mechanical and magnetic air gap length and the coil shape has an influence on the thrust. Therefore, the analysis of magnetic field due to the magnets is carried out by EMC. The phenomena according to the various coil various coil shape under the same Magneto Motive Force(MMF) has been analyzed and its result is applied to the design process. The appropriateness of the proposed technique is confirmed by Finite Element Method(FEM) and its dynamic analysis is carried out from the coupling of the electrical circuit equation and mechanical kinetic equation.

  • PDF

D-q Equivalent Circuit-based Protection Algorithm for a Doubly-fed Induction Generator in the Time Domain

  • Kang, Yong-Cheol;Kang, Hae-Gweon;Lee, Ji-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.371-378
    • /
    • 2010
  • Most modern wind turbines employ a doubly-fed induction generator (DFIG) system due to its many advantages, such as variable speed operation, relatively high efficiency, and small converter size. The DFIG system uses a wound rotor induction machine so that the magnetizing current of the generator can be fed from both the stator and the rotor. We propose a protection algorithm for a DFIG based on a d-q equivalent circuit in the time domain. In the DFIG, the voltages and currents of the rotor side and the stator side are available. The proposed algorithm estimates the instantaneous induced voltages of magnetizing inductance using those voltages and currents from both the stator and the rotor sides. If the difference between the two estimated induced voltages exceeds the threshold, the proposed algorithm detects an internal fault. The performance of the proposed algorithm is verified under various operating and fault conditions using a PSCAD/EMTDC simulator.