• 제목/요약/키워드: equivalent linear damping

검색결과 104건 처리시간 0.023초

Design of sliding-type base isolators by the concept of equivalent damping

  • Yang, Yeong-Bin;Chen, Yi-Chang
    • Structural Engineering and Mechanics
    • /
    • 제8권3호
    • /
    • pp.299-310
    • /
    • 1999
  • One problem with base isolators of the sliding type is that their dynamic responses are nonlinear, which cannot be solved in an easy manner, as distinction must be made between the sliding and non-sliding phases. The lack of a simple method for analyzing structures installed with base isolators is one of the obstacles encountered in application of these devices. As an initial effort toward simplification of the analysis procedure for base-isolated structures, an approach will be proposed in this paper for computing the equivalent damping for the resilient-friction base isolators (R-FBI), based on the condition that the sum of the least squares of errors of the linearized response with reference to the original nonlinear one is a minimum. With the aid of equivalent damping, the original nonlinear system can be replaced by a linear one, which can then be solved by methods readily available. In this paper, equivalent damping curves are established for all ranges of the parameters that characterize the R-FBI for some design spectra.

An equivalent linear SDOF system for prediction of nonlinear displacement demands of non-ductile reinforced concrete buildings with shear walls

  • Saman Yaghmaei-Sabegh;Shabnam Neekmanesh;Nelson Lam;Anita Amirsardari;Nasser Taghizadieh
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.655-664
    • /
    • 2023
  • Reinforced concrete (RC) shear wall structures are one of the most widely used structural systems to resist seismic loading all around the world. Although there have been several efforts to provide conceptually simple procedures to reasonably assess the seismic demands of structures over recent decades, it seems that lesser effort has been put on a number of structural forms such as RC shear wall structures. Therefore, this study aims to represent a simple linear response spectrum-based method which can acceptably predict the nonlinear displacements of a non-ductile RC shear wall structure subjected to an individual ground motion record. An effective period and an equivalent damping ratio are introduced as the dynamic characteristics of an equivalent linear SDOF system relevant to the main structure. By applying the fundamental mode participation factor of the original MDOF structure to the linear spectral response of the equivalent SDOF system, an acceptable estimation of the nonlinear displacement response is obtained. Subsequently, the accuracy of the proposed method is evaluated by comparison with another approximate method which is based on linear response spectrum. Results show that the proposed method has better estimations for maximum nonlinear responses and is more utilizable and applicable than the other one.

국내 지반에서의 비선형 부지효과 예측 (Estimation of Nonlinear Site Effects of Soil Profiles in Korea)

  • 이홍성;윤세웅;박두희;김인태
    • 한국지반공학회논문집
    • /
    • 제24권3호
    • /
    • pp.13-23
    • /
    • 2008
  • 시간영역에서 수행되는 비선형 지반응답해석에서 지반의 미소변형률 감쇠는 Rayleigh 감쇠공식을 이용하여 점성감쇠로서 모사된다. 실제 지반의 미소변형률 감쇠는 주파수의 영향을 받지 않는 반면 시간영역해석에서의 점성감쇠는 주파수의 영향을 크게 받으며 이의 영향정도는 Rayleigh 감쇠공식에 따라서 결정된다. 본 연구에서는 국내 지반에 대한 비선형 지반응답해석시 감쇠공식의 영향을 평가하고자 일련의 해석을 수행하였다. 해석결과 점성감쇠공식은 계산된 응답에 매우 큰 영향을 미치는 것으로 나타났다. 널리 사용되는 Simplified Rayleigh 공식은 심도 30m 이상의 지반에서 수치적으로 발생하는 인공감쇠로 인하여 고주파수에서의 에너지 소산을 과대예측하는 것으로 나타난 반면, Full Rayleigh 공식을 사용하며 적절하게 최적주파수를 선정한 경우, 인공감쇠는 크게 감소하는 것으로 나타났다. 나아가 해석결과를 등가선형해석과 비교한 결과 20m 미만의 얕은 심도 지반에서도 등가선형 해석은 최대가속도를 과대예측 할 수 있는 것으로 나타났다.

바아지형 FPSO의 횡운동 성능에 대한 해석 (An Analysis of Rolling Performance for a Barge-Type FPSO)

  • 최윤락;김진하;김용수
    • 한국해양공학회지
    • /
    • 제19권3호
    • /
    • pp.25-30
    • /
    • 2005
  • To predict rolling performance for a barge-type FPSO, the evaluation of correct nonlinear roll damping is critical. The square section of FPSO causes a considerable viscous damping effect. Free roll decay tests were carried out to estimate nonlinear roll damping for a barge-type FPSO, under three different conditions. The roll motion RAO was deduced from model tests in the wave condition of the wideband spectrum. In numerical calculation, the quadratic damping was considered as equivalent linear damping, using the results of free roll decay test. Tested roll performance in the JONSWAP wave spectrum was compared with numerical results. These two results shaw good agreement, in spite of the proximity of peak wave period and roll natural period.

Equivalent damping of a structure with vibration control devices subjected to wind loads

  • Hwang, Jae-Seung;Kim, Jinkoo;Lee, Sang-Hyun;Min, Kyung-Won
    • Wind and Structures
    • /
    • 제6권4호
    • /
    • pp.249-262
    • /
    • 2003
  • The purpose of this study is to propose a procedure for evaluating quantitatively the increase of the equivalent damping ratio of a structure with passive/active vibration control systems subjected to a stationary wind load. A Lyapunov function governing the response of a structure and its differential equation are formulated first. Then the state-space equation of the structure coupled with the secondary damping system is solved. The results are substituted into the differential equation of the Lyapunov function and its derivative. The equivalent damping ratios are obtained from the Lyapunov function of the combined system and its derivative, and are used to assess the control effect of various damping devices quantitatively. The accuracy of the proposed procedure is confirmed by applying it to a structure with nonlinear as well as linear passive/active control systems.

A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems

  • Samimifar, Maryam;Massumi, Ali;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.289-301
    • /
    • 2019
  • Hysteretic energy is defined as energy dissipated through inelastic deformations during a ground motion by the system. It includes frequency content and duration of ground motion as two remarkable parameters, while these characteristics are not seen in displacement spectrum. Since maximum displacement individually cannot be the appropriate criterion for damage assessment, hysteretic energy has been evaluated in this research as a more comprehensive seismic demand parameter. An innovative methodology has been proposed to establish a new equivalent linear model to estimate hysteretic energy spectrum for bilinear SDOF models under two different sets of earthquake excitations. Error minimization has been defined in the space of equivalent linearization concept, which resulted in equivalent damping and equivalent period as representative parameters of the linear model. Nonlinear regression analysis was carried out for predicting these equivalent parameter as a function of ductility. The results also indicate differences between seismic demand characteristics of far-field and near-field ground motions, which are not identified by most of previous equations presented for predicting seismic energy. The main advantage of the proposed model is its independency on parameters related to earthquake and response characteristics, which has led to more efficiency as well as simplicity. The capability of providing a practical energy based seismic performance evaluation is another outstanding feature of the proposed model.

Dynamic properties of a building with viscous dampers in non-proportional arrangement

  • Suarez, Luis E.;Gaviria, Carlos A.
    • Structural Engineering and Mechanics
    • /
    • 제55권6호
    • /
    • pp.1241-1260
    • /
    • 2015
  • Any rational approach to define the configuration and size of viscous fluid dampers in a structure should be based on the dynamic properties of the system with the dampers. In this paper we propose an alternative representation of the complex eigenvalues of multi degree of freedom systems with dampers to calculate new equivalent natural frequencies. Analytical expressions for the dynamic properties of a two-story building model with a linear viscous damper in the first floor (i.e. with a non-proportional damping matrix) are derived. The formulas permit to obtain the equivalent damping ratios and equivalent natural frequencies for all the modes as a function of the mass, stiffness and damping coefficient for underdamped and overdamped systems. It is shown that the commonly used formula to define the equivalent natural frequency is not applicable for this type of system and for others where the damping matrix is not proportional to the mass matrix, stiffness matrix or both. Moreover, the new expressions for the equivalent natural frequencies expose a novel phenomenon; the use of viscous fluid dampers can modify the vibration frequencies of the structure. The significance of the new equivalent natural frequencies is expounded by means of a simulated free vibration test. The proposed approach may offer a new perspective to study the effect of viscous dampers on the dynamic properties of a structure.

The use of the semi-empirical method to establish a damping model for tire-soil system

  • Cuong, Do Minh;Ngoc, Nguyen Thi;Ran, Ma;Sihong, Zhu
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.395-406
    • /
    • 2018
  • This paper proposes a linear damping model of tire-soil system using semi-empirical method. A test rig was designed and developed to measure the vertical equivalent linear damping ratio of tire only and tire-soil system using Free-Vibration Logarithmic Decay Method. The test was performed with two kinds of tractor tires using a combination of five inflation pressure levels, two soil depths and four soil moisture contents in the paddy soil. The results revealed that the linear damping ratio of tires increased with decreasing tire inflation pressure; the linear damping ratio of tire-soil system also increased with decreasing tire inflation pressure and increased with the increasing soil depth (observed at 80 and 120 mm). It also increased with a relative increase of soil moisture contents (observed at 37.9%, 48.8%, 66.7% and 77.4%). The results also indicated that the damping ratio of tire-soil system was higher than that of tire only. A linear damping model of tire-soil system is proposed as a damping model in parallel which is established based on experimental results and vibration theory. This model will have a great significance in study of tractor vibration.

고감쇠 면진베어링에 의해 지지된 면진구조물의 지진응답해석 (Seismic Response Analysis of a Base-Isolated Structure Supported on High Damping Rubber Bearings)

  • 유봉;이재한;구경회
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.99-106
    • /
    • 1995
  • The seismic responses of a base Isolated Pressurized Water Reactor(PWR) are investigated using a mathematical model which expresses the superstructure as a linear lumped mass-spring and the seismic Isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 El Centre earthquake with linear amplification. In the analysis 5% of structural damping is used for the superstructure. The effects of high damping rubber bearing on seismic response of the superstructure in base isolated system are evaluated for four stiffness model types. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure. In the higher strain region where stiffness behaves non-linearly, the acceleration responses modelled by one equivalent stiffness are smaller than those in nonlinear spring model, and the higher stiffness spring model of isolator exhibits larger peak acceleration response at superstructure in the frequency range above 2.0 Hz. when subjected to linearly amplified 1940 El Centre earthquake.

  • PDF

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.