• Title/Summary/Keyword: equivalent linear analysis

Search Result 526, Processing Time 0.029 seconds

Verification of Modified Equivalent Linear Analysis Through Case Study (수정된 등가선형 해석 기법의 사례를 통한 검증)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Du-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.273-276
    • /
    • 2008
  • Equivalent linear method indirectly reflects a variation of shear modulus(G/Gmax) and damping ratio $(\xi)$ by selects mean value of every response analysis. Existing equivalent linear method does not properly consider variation of shear strain along frequencies and uses mean value. Real dynamic soil behavior is affected by shear stiffness and damping ratio. Modified equivalent linear method is developed to consider variation. Modified equivalent linear method can reflects high strain at low frequency and low strain at high frequency by using an easement curve. This study presents propriety of method by case study.

  • PDF

Development & Verification of Frequency-Strain Dependence Curve (주파수-변형률 곡선의 개발 및 검증)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.146-153
    • /
    • 2009
  • One dimensional site response analysis is widely used in prediction of the ground motion that is induced by earthquake. Equivalent linear analysis is the most widely used method due to its simplicity and ease of use. However, the equivalent linear method has been known to be unreliable since it approximates the nonlinear soil behavior within the linear framework. To consider the nonlinearity of the ground at frequency domain, frequency dependent algorithms that can simulate shear strain - frequency dependency have been proposed. In this study, the results of the modified equivalent linear analysis are compared to evaluate the degree of improvement and the applicability of the modified algorithms. Results show the novel smoothed curve that is proposed by this study indicates the most stable prediction and can enhance the accuracy of the prediction.

  • PDF

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.

Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (I) (선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (I) - 알고리듬 -)

  • Park Ki-Jong;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1051-1060
    • /
    • 2005
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. The conventional method spends most of the total design time on nonlinear analysis. The NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The proposed algorithm is applied to a simple mathematical problem to verify the convergence and the optimality.

Analysis of the Linear Transformation of Prestressing Tendon Using Equivalent toad Method (등가하중법 관점에서 분석한 프리스트레싱 텐던의 직선이동)

  • 오병환;전세진
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.843-850
    • /
    • 2002
  • Linear transformation theory has been effectively used in the design and analysis of prestressed concrete structures. The underlying assumptions of the theory, which were often overlooked, are investigated in the respect of equivalent load method. As a result, it is found that the same equivalent loading system is produced for all the cases of the linear transformation by the assumptions of the conventional equivalent load method. On the other hand, equivalent loading systems in a strict and accurate sense do not satisfy the classical theories of the linear transformation. Also, it is shown that a little different equivalent loading system from the conventional one is obtained for each linear transformation according to the proposed equivalent load method that is derived from the self-equilibrium property of the tendon-induced forces. Therefore, it can be concluded that the linear transformation theory is valid only when referring to the conventional approximate equivalent load method. The discussions are further extended to the eccentrically located circumferential tendon in the wall of containment structures, where the problem of eccentricity is analyzed also from the view point of the linear transformation.

Comparison of Seismic Responses of Seismically Isolated NPP Containment Structures using Equivalent Linear- and Nonlinear-Lead-Rubber Bearing Modeling (등가선형 및 비선형 납-고무받침 모델을 이용한 면진된 원전구조물의 지진응답의 비교)

  • Lee, Jin Hi;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In order to perform a soil-isolation-structure interaction analysis of seismically isolated nuclear power plant (NPP) structures, the nonlinear behavior of a seismic isolation system may be converted to an equivalent linear model used in frequency domain analysis. Seismic responses for seismically isolated NPP containment structures subjected to a simple artificial acceleration history and different site class earthquakes are evaluated for the equivalent-linear and nonlinear models that have been applied to lead-rubber bearing (LRB) modeling. It can be observed that the maximum displacements of the equivalent linear model are larger than that of the nonlinear model. From the floor response spectrum analysis for the top of NPP containment structures, it can be observed that the spectral acceleration of an equivalent linear model at about 0.5 Hz frequency is about 2~3 times larger than that of a nonlinear model.

Estimation of Plastic Energy Dissipation Amount of Multi-bent Spatial structure by Equivalent Linear Analysis

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.131-136
    • /
    • 2006
  • It is important to evaluate energy absorption capacity of frames required during a design earthquake. An inelastic computer analysis based on mathematical modelling of energy absorbing frames and elements makes it possible to evaluate required energy absorption capacity. But such an analysis sometimes consumes much computation time particularly in case of complicated structural system. This paper presents a proposal to predict energy absorption of multi-bent steel frames by simple equivalent linear method.

  • PDF

Seismic Fragility Analysis of Seismically Isolated Nuclear Power Plant Structures using Equivalent Linear- and Bilinear-Lead Rubber Bearing Model (등가선형 및 이선형 납-고무받침 모델을 적용한 면진된 원전구조물의 지진 취약도 해석)

  • Lee, Jin-Hi;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.207-217
    • /
    • 2015
  • In order to increase seismic performance of nuclear power plant (NPP) in strong seismic zone, lead-rubber bearing (LRB) can be applied to seismic isolation system of NPP structures. Simple equivalent linear model as structural analysis model of LRB is more widely used in initial design process of LRB than a bilinear model. Seismic responses for seismically isolated NPP containment structures subjected to earthquakes categorized into 5 different soil-site classes are calculated by both of the equivalent linear- and bilinear- LRB models and compared each others. It can be observed that the maximum displacements of LRB and shear forces of containment in the case of the equivalent linear LRB model are larger than those in the case of bilinear LRB model. From the seismic fragility curves of NPP containment structures isolated by LRB, it can be observed that seismic fragility in the case of equivalent linear LRB model are about 5~30 % larger than those in the case of bilinear LRB model.

Experimental Study on the Probability-based Equivalent Linearization of a Friction Damper-Brace System (마찰감쇠기-가새 시스템의 확률분포 기반 등가선형화에 관한 실험적 연구)

  • Kang, Kyung-Soo;Park, Ji-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.394-403
    • /
    • 2006
  • A new equivalent linearization technique is proposed for a friction damper-brace system (FDBS) idealized as a elastoplastic system. The equivalent linearization technique utilizes secant stiffness and dissipated energy defined by the probability distribution of the extremal displacement of the FDBS. In addition, a conversion scheme is proposed so that an equivalent linear system is designed first and converted to the FDBS. For comparative study, an existing model update technique based on system identification is modified in a form appropriate to update single element. For the purpose of verification, shaking table tests of a small scale three-story shear building model, in which a rotational FDBS is installed, are conducted and equivalent linear systems are obtained using the proposed technique and the model update technique. Complex eigenvalue analysis is conducted for those equivalent linear systems, and the natural frequencies and modal damping ratios are compared with those obtained from system identification. Additionally, RMS and peak responses obtained from time history analysis of the equivalent linear systems are compared with measured ones.

Non-linear Structural Optimization Using NROESL (등가정하중을 이용한 구조최적설계 방법을 이용한 비선형 거동구조물의 최적설계)

  • 박기종;박경진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1256-1261
    • /
    • 2004
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. It is more expensive to carry out nonlinear response optimization than linear response optimization. The conventional method spends most of the total design time on nonlinear analysis. Thus, the NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The function satisfies the descent condition at each cycle and the NROESL algorithm converges. It is mathematically validated that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition of the original nonlinear response optimization problem. The NROESL algorithm is applied to two structural problems. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

  • PDF