• Title/Summary/Keyword: equivalent circuit model

Search Result 650, Processing Time 0.037 seconds

Simulation of Surface Acoustic Wave Filters Using SPICE (SPICE를 사용한 표면음파 필터의 시뮬레이션)

  • Yu, Sang-Dae
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.142-147
    • /
    • 2001
  • Using transmission-line equivalent circuit based on cross-field model for an interdigital acoustic wave transducer, an efficient simulation technique of SAW filters by SPICE is proposed. Propagation of surface acoustic wave is modeled as transmission line so that frequency-dependent circuit elements are not needed in the equivalent circuit of an interdigital transducer. Because the equivalent circuits for frequency-dependent circuit elements are not derived approximately, and a small number of circuit elements are used in the equivalent circuit for filters, simulation time is much reduced. The utility of the proposed technique is demonstrated through simulation for the characteristics of SAW filters such as insertion loss, input admittance, passband ripple, and harmonic frequency response.

  • PDF

Novel Power Bus Design Method for High-Speed Digital Boards (고속 디지털 보드를 위한 새로운 전압 버스 설계 방법)

  • Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.23-32
    • /
    • 2006
  • Fast and accurate power bus design (FAPUD) method for multi-layers high-speed digital boards is devised for the power supply network design tool for accurate and precise high speed board. FAPUD is constructed, based on two main algorithms of the PBEC (Path Based Equivalent Circuit) model and the network synthesis method. The PBEC model exploits simple arithmetic expressions of the lumped 1-D circuit model from the electrical parameters of a 2-D power distribution network. The circuit level design based on PBEC is carried with the proposed regional approach. The circuit level design directly calculates and determines the size of on-chip decoupling capacitors, the size and the location of off-chip decoupling capacitors, and the effective inductances of the package power bus. As a design output, a lumped circuit model and a pre-layout of the power bus including a whole decoupling capacitors are obtained after processing FAPUD. In the tuning procedure, the board re-optimization considering simultaneous switching noise (SSN) added by I/O switching can be carried out because the I/O switching effect on a power supply noise can be estimated over the operation frequency range with the lumped circuit model. Furthermore, if a design changes or needs to be tuned, FAPUD can modify design by replacing decoupling capacitors without consuming other design resources. Finally, FAPUD is accurate compared with conventional PEEC-based design tools, and its design time is 10 times faster than that of conventional PEEC-based design tools.

A Study on DC side Model of Current Source type Active Power Filters (전류원형 능동 전력 필터의 직류측 모델에 관한 연구)

  • Han, Hak-Guhn;Park, In-Gyu;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.180-185
    • /
    • 1989
  • In the current source type active power filter, the DC current source is implemented using an inductor with large inductance by maintaining the inductor current constantly. In this case, to compensate the loss of the switching devices of the power converter and the inductor, some real power should be supplied to the filter from the source. This process is analyzed through the equivalent circuit which expresses the loss of the switching devices and the inductor with the equivalent resistor R. This work discusses the validation of this DC side equivalent circuit and points out the problems, through the experiments using the experimental active power filter with 220V, 10KVA ratings, and suggests a more accurate equivalent circuit which puts the saturation voltage of the power transistors and the threshold voltage of the diodes into consideration.

  • PDF

Thermal Analysis using Thermal Equivalent Circuit Analysis and Finite Element Method of In-wheel Motor (In-wheel 전동기의 열 등가회로 해석 및 유한요소해법을 이용한 열해석)

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Hong, Jung-Pyo;Nam, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.941-942
    • /
    • 2011
  • A thermal equivalent circuit of IPMSM considering eddy current loss of PM and core loss of rotor is proposed. This thermal equivalent model is represented by the thermal resistances and thermal capacitances. In order to determine the factor of each parameter, a heating test is processed. Additionally, the eddy current loss of PM is calculated by a transient 3D finite element analysis. Finally, this thermal equivalent model is verified by a temperature test in a 25kW 12-pole/18-slot IPMSM with varying load.

  • PDF

Analysis of a Surface-Mounted Permanent-Magnet Machine with Overhang Structure by Using a Novel Equivalent Magnetic Circuit Model

  • Yeo, Han-Kyeol;Woo, Dong-Kyun;Lim, Dong-Kuk;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1960-1966
    • /
    • 2014
  • The rotor overhang is used to enhance the air-gap flux and improve the power density. Due to the asymmetry in the axial direction caused by the overhang, a time consuming 3D analysis is necessary when designing a motor with overhang. To solve this problem, this paper proposes an equivalent magnetic circuit model (EMCM) which takes account overhang effects without a 3D analysis by using effective air-gap length. The analysis time can be reduced significantly via the proposed EMCM. A reduction in the analysis time is essential for a preliminary design of a motor. In order to verify the proposed model, a 3-D finite-element method (FEM) analysis is adopted. 3-D FEM results confirm the validity of the proposed EMCM.

A Study of Dynamic Characteristic Analysis for Hysteresis Motor Using Permeability and Load Angle by Inverse Preisach Model (역 프라이자흐 모델에 의한 투자율과 부하각을 이용한 히스테리시스 전동기의 동적 특성 해석 연구)

  • Kim, Hyeong-Seop;Han, Ji-Hoon;Choi, Dong-Jin;Hong, Sun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.2
    • /
    • pp.262-268
    • /
    • 2019
  • Previous dynamic models of hysteresis motor use an extended induction machine equivalent circuit or somewhat different equivalent circuit with conventional one, which makes unsatisfiable results. In this paper, the hysteresis dynamic characteristics of the motor rotor are analyzed using the inverse Preisach model and the hysteresis motor equivalent circuit considering eddy current effect. The hysteresis loop for the rotor ring is analyzed under full-load voltage source static state. The calculated hysteresis loop is then approximated to an ellipse for simplicity of dynamic computation. The permeability and delay angle of the elliptic loop apply to the dynamic analysis model. As a result, it is possible to dynamically analyze the hysteresis motor according to the applied voltage and the rotor material. With this method, the motor speed, generated torque, load angle, rotor current as well as synchronous entry time, hunting effect can be calculated.

Study on Analysis of Single Phase Induction Motor Considering Saturation Factor (포화계수를 고려한 단상 유도전동기의 해석에 관한 연구)

  • Cho, Su-Yeon;Kim, Kwang-Soo;Im, Jong-Bin;Ryu, Gwang-Hyeon;Oh, Se-Young;Ahn, Han-Woong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.846-847
    • /
    • 2011
  • This paper presents the study on analysis of single phase induction motor characteristics by equivalent circuit. For high efficiency of single phase induction motor, the motor parameters used for equivalent circuit analysis is important. The accuracy of equivalent circuit analysis of motor depends on the circuit parameters like saturation factor. Therefore this paper proposed the analysis method considering saturation factor. The saturation factor was calculated by iteration routine and numerical method. this proposed method was verified by FEM analysis results and dynamo test results of the prototype model.

  • PDF

Design, Analysis, and Equivalent Circuit Modeling of Dual Band PIFA Using a Stub for Performance Enhancement

  • Yousaf, Jawad;Jung, Hojin;Kim, Kwangho;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.169-181
    • /
    • 2016
  • This work presents a new method for enhancing the performance of a dual band Planer Inverted-F Antenna (PIFA) and its lumped equivalent circuit formulation. The performance of a PIFA in terms of return loss, bandwidth, gain, and efficiency is improved with the addition of the proposed open stub in the radiating element of the PIFA without disturbing the operating resonance frequencies of the antenna. In specific cases, various simulated and fabricated PIFA models illustrate that the return loss, bandwidth, gain, and efficiency values of antennas with longer optimum open stub lengths can be enhanced up to 4.6 dB, 17%, 1.8 dBi, and 12.4% respectively, when compared with models that do not have open stubs. The proposed open stub is small and does not interfere with the surrounding active modules; therefore, this method is extremely attractive from a practical implementation point of view. The second presented work is a simple procedure for the development of a lumped equivalent circuit model of a dual band PIFA using the rational approximation of its frequency domain response. In this method, the PIFA's measured frequency response is approximated to a rational function using a vector fitting technique and then electrical circuit parameters are extracted from it. The measured results show good agreement with the electrical circuit results. A correlation study between circuit elements and physical open stub lengths in various antenna models is also discussed in detail; this information could be useful for the enhancement of the performance of a PIFA as well as for its systematic design. The computed radiated power obtained using the electrical model is in agreement with the radiated power results obtained through the full wave electromagnetic simulations of the antenna models. The presented approach offers the advantage of saving computation time for full wave EM simulations. In addition, the electrical circuit depicting almost perfect characteristics for return loss and radiated power can be shared with antenna users without sharing the actual antenna structure in cases involving confidentiality limitations.

Characteristic Variation of 3-D Solenoid Embedded Inductors for Wireless Communication Systems

  • Shin, Dong-Wook;Oh, Chang-Hoon;Kim, Kil-Han;Yun, Il-Gu
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.347-354
    • /
    • 2006
  • The characteristic variation of 3-dimensional (3-D) solenoid-type embedded inductors is investigated. Four different structures of a 3-D inductor are fabricated by using a low-temperature co-fired ceramic (LTCC) process, and their s-parameters are measured between 50 MHz and 5 GHz. The circuit model parameters of each building block are optimized and extracted using the partial element equivalent circuit method and an HSPICE circuit simulator. Based on the model parameters, the characteristics of the test structures such as self-resonant frequency, inductance, and quality (Q) factor are analyzed, and predictive modeling is applied to the structures composed of a combination of the modeled building blocks. In addition, characteristic variations of the 3-D inductors with different structures using extracted building blocks are also investigated. This approach can provide a characteristic estimation of 3-D solenoid embedded inductors for structural variations.

  • PDF

Development of Simulation Model for Modular Multilevel Converters Using A Dynamic Equivalent Circuit (동적 등가 회로를 이용한 MMC의 시뮬레이션 모델 개발)

  • Shin, Dong-Cheoul;Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.17-23
    • /
    • 2020
  • This paper proposes a simulation model using an equivalent circuit for the development of an MMC system. The MMC has been chosen as the most suitable topology for high voltage power transmission, such as a voltage-type HVDC, and it has dozens to hundreds of sub-modules in the form of a half-bridge or full-bridge connected in series. A simulation study is essential for the development of an MMC algorithm. On the other hand, it is virtually impossible to construct and implement MMC simulation models, including hundreds or thousands of switching devices. Therefore, this paper presents an MMC equivalent model, which is easily expandable and implemented by modeling the dynamic characteristics. The voltage and current equation of the equivalent circuit was calculated using the direction of the arm current and switching signal. The model was implemented on Matlab/Simulink. In this paper, to show the validity of the model developed using Matlab/Simulink, the simulation results of a five-level MMC using the real switching element and the proposed equivalent model are shown. The validity of the proposed model was verified by showing that the current and voltage waveform in the two models match each other.