• Title/Summary/Keyword: equivalent beam element

Search Result 150, Processing Time 0.023 seconds

Dynamic Analysis of the Cracked Timoshenko Beam under a Moving Mass using Finite Element Method (유한요소법을 이용한 이동질량 하에 크랙을 갖는 티모센코 보의 동특성 연구)

  • Kang Hwan-Jun;Lee Shi-Bok;Hong Keum-Shik;Jeon Seung-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.271-276
    • /
    • 2004
  • In this paper. dynamic behavior of the cracked beam under a moving mass is presented using the finite element method (FEM). Model accuracy is improved with the following consideration: (1) FE model with Timoshenko beam element (2) Additional flexibility matrix due to crack presence (3) Interaction forces between the moving mass and supported beam. The Timoshenko bean model with a two-node finite element is constructed based on Guyan condensation that leads to the results of classical formulations. but in a simple and systematic manner. The cracked section is represented by local flexibility matrix connecting two unchanged beam segments and the crack as modeled a massless rotational spring. The inertia force due to the moving mass is also involved with gravity force equivalent to a moving load. The numerical tests for various mass levels. crack sizes. locations and boundary conditions were performed.

  • PDF

A general solution to structural performance of pre-twisted Euler beam subject to static load

  • Huang, Ying;Chen, Chang Hong;Keer, Leon M.;Yao, Yao
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.205-212
    • /
    • 2017
  • Based on the coupled elastic bending deformation features and relationships between the internal force and deformation of pre-twisted Euler beam, the generalized strain, the equivalent constitutive equation and the equilibrium equation of pre-twisted Euler beam are developed. Based on the properties of the dual-antisymmetric matrix, the general solution of pre-twisted Euler beam is obtained. By comparison with ANSYS solution by using straight Beam-188 element based on infinite approach strategy, the results show that the developed method is available for pre-twisted Euler beam and also provide an accuracy displacement interpolation function for the subsequent finite element analysis. The effect of pre-twisted angle on the mechanical property has been investigated.

Structural matrices of a curved-beam element

  • Gimena, F.N.;Gonzaga, P.;Gimena, L.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.307-323
    • /
    • 2009
  • This article presents the differential system that governs the mechanical behaviour of a curved-beam element, with varying cross-section area, subjected to generalized load. This system is solved by an exact procedure or by the application of a new numerical recurrence scheme relating the internal forces and displacements at the two end-points of an increase in its centroid-line. This solution has a transfer matrix structure. Both the stiffness matrix and the equivalent load vector are obtained arranging the transfer matrix. New structural matrices have been defined, which permit to determine directly the unknown values of internal forces and displacements at the two supported ends of the curved-beam element. Examples are included for verification.

Application of Equivalent Beam Element for Practical Vibration Analysis of Stadium Structure (스타디움 구조물의 실용적인 진동해석을 위한 등가보요소의 적용)

  • Kim, Gee-Cheol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.91-99
    • /
    • 2004
  • In general, stadium structure with long span has low inherent natural frequency. In the stadium structure, structural behavior similar to resonance can be occurred easily by spectator rhythmical movements of which exciting period is small comparatively. It is required to investigate the safety and the serviceability of stadium structure. Therefore, there exists a necessity for accurate vibration analysis. Accurate analysis of stadium structure subjected to dynamic load is required for economical construction and safe design of stadium structure. Stadium structure should be modeled by refined mesh for accurate vibration analysis. As the mesh of stadium structure is refined, the number of divided elements increases in numerical analysis. The number of node is increased and numerous computer memories or computational time are required. So it is very difficult to analyze refine model of stadium structures by using the commercial programs. It is possible to efficient vibration analysis of stadium structure by finite element modeling method using equivalent beam element proposed in this paper, because the number of nodes is decreased remarkably.

Free vibration analysis of tall buildings with outrigger-belt truss system

  • Malekinejad, Mohsen;Rahgozar, Reza
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.89-107
    • /
    • 2011
  • In this paper a simple mathematical model is presented for estimating the natural frequencies and corresponding mode shapes of a tall building with outrigger-belt truss system. For this purposes an equivalent continuum system is analyzed in which a tall building structure is replaced by an idealized cantilever continuum beam representing the structural characteristics. The equivalent system is comprised of a cantilever shear beam in parallel to a cantilever flexural beam that is constrained by a rotational spring at outrigger-belt truss location. The mathematical modeling and the derivation of the equation of motion are given for the cantilevers with identically paralleled and rotational spring. The equation of motion and the associated boundary conditions are analytically obtained by using Hamilton's variational principle. After obtaining non-trivial solution of the eigensystem, the resulting is used to determine the natural frequencies and associated mode shapes of free vibration analysis. A numerical example for a 40 story tall building has been solved with proposed method and finite element method. The results of the proposed mathematical model have good adaptation with those obtained from finite element analysis. Proposed model is practically suitable for quick evaluations during the preliminary design stages.

Introducing a precast moment resistant beam-to-column concrete connection comparable with in-situ one

  • Esmaeili, Jamshid;Ahooghalandary, Neyram
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.203-215
    • /
    • 2019
  • Precast reinforced concrete structure (PRCS) consists of prefabricated members assembled at worksites and has more connections limitations in comparison with the equivalent in-situ reinforced concrete structure (IRCS). As a result of these limitations, PRCSs have less ductility in comparison with IRCSs. Recent studies indicate that the most noticeable failure in PRCSs have occurred in their connection zone. The objective of this study is introducing a type of precast beam-to-column connection (PBC) which in spite of being simple is of the same efficiency and performance as in-situ beam-to-column connection (IBC). To achieve this, the performance of proposed new PBC at exterior joint of a four story PRCS was analyzed by pseudo dynamic analysis and compared with that of IBC in equivalent IRCS. Results indicated that the proposed connection has even better performance in terms of strength, energy dissipation and stiffness, than that of IBC.

Deflection calculation method on GFRP-concrete-steel composite beam

  • Tong, Zhaojie;Song, Xiaodong;Huang, Qiao
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.595-606
    • /
    • 2018
  • A calculation method was presented to calculate the deflection of GFRP-concrete-steel beams with full or partial shear connections. First, the sectional analysis method was improved by considering concrete nonlinearity and shear connection stiffness variation along the beam direction. Then the equivalent slip strain was used to take into consideration of variable cross-sections. Experiments and nonlinear finite element analysis were performed to validate the calculation method. The experimental results showed the deflection of composite beams could be accurately predicted by using the theoretical model or the finite element simulation. Furthermore, more finite element models were established to verify the accuracy of the theoretical model, which included different GFRP plates and different numbers of shear connectors. The theoretical results agreed well with the numerical results. In addition, parametric studies using theoretical method were also performed to find out the effect of parameters on the deflection. Based on the parametric studies, a simplified calculation formula of GFRP-concrete-steel composite beam was exhibited. In general, the calculation method could provide a more accurate theoretical result without complex finite element simulation, and serve for the further study of continuous GFRP-concrete-steel composite beams.

Seismic performance of prefabricated reinforced concrete column-steel beam sub-assemblages

  • Bai, Juju;Li, Shengcai
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.203-218
    • /
    • 2022
  • In this paper, quasi-static tests were carried out on three prefabricated reinforced concrete column-steel beam (RCS) sub-assemblages with floor slabs and one comparison specimen without floor slab. The effects of axial compression and floor slab on the seismic performance were studied, and finite element simulations were conducted using ABAQUS. The results showed that the failure of prefabricated RCS sub-assemblages with floor occurred as a joint beam and column failure mode, while failure of sub-assemblages without floor occurred due to beam plastic hinge formation. Compared to the prefabricated RCS sub-assemblages without floor slab, the overall stiffness of the sub-assemblages with floor slab was between 19.2% and 45.4% higher, and the maximum load bearing capacity increased by 26.8%. However, the equivalent viscosity coefficient was essentially unchanged. When the axial compression ratio increased from 0.24 to 0.36, the hysteretic loops of the sub-assemblages with floor became fuller, and the load bearing capacity, ductility, and energy dissipation capacity increased by 12.1%, 12.9% and 8.9%, respectively. Also, the initial stiffness increased by 10.2%, but the stiffness degradation accelerated. The proportion of column drift caused by beam end plastic bending and column end bending changed from 35% and 46% to 47% and 36%, respectively. Comparative finite element analyses indicated that the numerical simulation outcomes agreed well with the experimental results.

The Stress Analysis of the Cross Beam of the Electric Car-body according to the Change of Location and Shape of Circular Hole (원공 위치와 형상 변화에 따른 전동차 크로스 빔의 강도해석)

  • Jeon, Hyung-Yong;Sung, Rak-Won;Han, Geun-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.9-17
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method for optimal design of the cross beam with circular holes of the electric car-body. in order to install the air pipe and electric wire pipe that correspond signal between electric machines for the control system and to reduce the weight of the electric car-body, several circular areas from a cross beam should be taken off. What we want to perform is the optimal design of a cross beam with circular holes to posses equal stress in comparison with no hole cross beam. first, no hole cross beam as basic modal be chosen, executing the analysis, reviewing the distribution of stress and displacement at each location. several parameter should be adopted from the cross beam geometry like the location and shape of the hole to affect the maximum stress and displacement. So the analysis was executed by finite element analysis for finding optimal design parameter to the change of the location and shape of the circular hole. finally, the optimal design of the cross beam with circular holes was obtained and the maximum equivalent stress was compared with no hole cross beam at each location.

  • PDF

Prediction of Ultimate Strength of Concrete Deep Beams with an Opening Using Strut-and-Tie Model (스트럿-타이 모델에 의한 개구부를 갖는 깊은 보의 극한강도 예측)

  • 지호석;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.189-194
    • /
    • 2001
  • In this study, ultimate strength of concrete deep beams with an opening is predicted by using Strut-and-Tie Model with a new effective compressive strength. First crack occurs around an opening by stress concentration due to geometric discontinuity. This results in decreasing ultimate strength of deep beams with an opening compared with general deep beams. With fundamental notion that ultimate strength of deep beam with an opening decreases as a result of reduction in effective compressive strength of a concrete strut, an equivalent effective compressive strength formula is proposed in order to reflect ultimate strength reduction due to an opening located in a concrete strut. An equivalent effective compressive strength formula which can reflect opening size and position is added to a testified algorithm of predicting ultimate strength of concrete deep beams. Therefore, ultimate strength of concrete deep beam with an opening is predicted by using a simple and rational STM algorithm including an equivalent effective compressive strength formula, not by finite element analysis or a former complex Strut-and-Tie Model

  • PDF